United States Patent 19

US005452415A
(11] Patent Number:

1451 Date of Patent:

5,452,415
Sep. 19, 1995

Hotka

[54] METHOD AND SYSTEM FOR
AUTOMATICALLY DISPLAYING AND
CONFIGURING A NETWORK
MONITORING SYSTEM

[75]1 Inventor: Michael A. Hotka, Garland, Tex.

[73] Assignee: Alcatel Network Systems, Inc.,

Richardson, Tex.

[21] Appl. No.: 858,296

[22] Filed: Mar. 26, 1992

[51] Inmt. CLS GOG6F 9/00

[52] US.CL 395/161; 395/155

[58] Field of Search 395/155, 158, 160, 161,

[56]

395/575; 364/146; 371/11.1, 16.1; 340/825.06,

FOREIGN PATENT DOCUMENTS
0274406 7/1988 European Pat. Off. .

Primary Examiner—Heather R. Herndon
Assistant Examiner—CIliff N. Vo
Attorney, Agent, or Firm—Baker & Botts

[57] ABSTRACT

A method and system that provides several pre-defined
user templates that may be combined in various ways to
represent all known network configurations of a digital
cross-connect network. The system interrogates the
user concerning the network configuration. The results
of the interrogations determine the type of network
monitor and control system configuration templates
that the user will see. The system creates a database as
a result of the combination of the templates and places

825.17 on line the user templates and associated software to
represent of the entire digital cross-connect network.
References Cited This monitoring system can be used to not only vividly
display the node from which a component error comes,
U.S. PATENT DOCUMENTS but can illustrate the specific sub-component that pro-
4,622,633 1171986 Ceccon et al.ocverrveunnecne. 364/200 vides the error and a representation of the various error
4,723,270 2/1988 Okamoto et al. ..coovoeevcs 379/113 lights that appear on the sub-component. The represen-
5,021,968 6/1991 Ferke:tlc 3957161 X tation that the System displays appears on a computer
g’ggé’?g; _61/ }93; %"Chl‘e et S ----- 3 2(7) lg 2;60;§ screen and the accompanying software further allows
533688 8?1393 nge aetal e - 340/ 3957161 the user to monitor, to Teplace, or add to remotely lo-
5247, 433 971993 Kitaura et al. .. 364,146 X cated patching devices in response to situations at the
5,263,167 11/1993 Conner, Jr. et al. 395/161 X ~ remote locations.
5,265,241 11/1993 Arnold et al.covevvrrceeenncne 395/575
5,270,919 12/1993 Blake et al. 340/825.17 X 12 Claims, 8 Drawing Sheets
110
L~92
- 1631 SX | NETWORK STATUS |
LEGEND 1/0 SHELF~13, 11, Y ¥
OFFICEQ2 BAY 3 SHELF 1 -~ /
118-] s
T el
z 2
G/‘1 24 o
Smfetofoilol | N | [t | SRR I=x
zezzzzzg | B | L8 | Ezzzzzzz .
OOOOOOOOOOOUI foOOOOOQOOOOO .
122[124
e} ~
g Z
o o
w2mzel |-~ o] | sRRiRRRR
zzzzaEEs | ERE Y E | ErrERreEE
o|o|o|o|o|e|ojolojolojo|c] © ojo|o|o|o]o|o]ololole
124
| QUEUE] [PATCH] [MONITOR | [MENU | [[BAY VIEW] [NETWORK v1Ew||
7 — = vi 7 T i N
T Y 7 T T

54 56 104 106

58

)
126

U.S. Patent Sep. 19, 1995 Sheet 1 of 8 5,452,415

12 14

16335X

*

. 16335X
\

]
/

MANAGEMENT
CONTROL

U.S. Patent Sep. 19, 1995 Sheet 2 of 8 5,452,415
'/40
FIG. 2
SX NETWORK STATUS
LEGEND Network View 4
MONITOR 12
OFFICEOT| <~
PATCH
42
“~rvowmor] <
45] OFFICE02 <« 14
45 LPAICH
MONITOR
OFFICEO3| <-~—16
PATCH

60
4 56 58
5\ \) - r/

HELP) [QUEUE] [WENU]

U.S. Patent Sep. 19, 1995 Sheet 3 of 8 5,452,415
70
FIG. 3 4
LEGEND 1631 SX NETWORK STATUS
g:‘;‘ I‘%Ev? < 56 LINK STATUS
(- \ (
52 | |RSP SHELF|| RSP SHELF| 0 100
80 90
APU SHELF || 1/0 SHELF| 1
82 92
TSI SHELF || 1/0 SHELF| 2
84 94
74 1 > 78
PWR SHELF||1/0 SHELF| 3
86 96
TSI SHELF || 1/0 SHELF| 4
8 || 98
BAY 2 BAY3
7 7 /1 02
[HELP] [QUEUE] | PATCH| | MONITOR | | MENU | [NETWORK VIEW |
//l //l //I //] //l (\\
7 T 7 7 N \
4 56 104 106 58 108

U.S. Patent Sep. 19, 1995 Sheet 4 of 8 5,452,415
110
FIG. 4 ¥
52
1631 SX NETWORK STATUS
LEGEND I/O SHELF\114 112 gO 92
OFFICEO2 BAY 3 SHELF 14~ ¥
118-1 4116
- Te)
z 2
@r124 ©'
N |in)wo]~jo o~ :‘O J|RINISIRIZIRI=
gzz@zzzg | 2 L2 | |olzlzlzlzEzz
©©@©@©@@©@©12.4“/©©©©©@?©@©©©
122] 124
~) ™~
& o
) o)
P =]]] o <+|—lov| & [0 SHPBIRIRIRILIG
Uy (N PN NUNDY MUY NN P R D> b |D RNy N Y PN P R R R
LBIBIRBIBIRILBIB aRLUL 1= KRIR(BBILRLIBIA
o|o|o|o|o|o|o|o|o|o|olo|Q| © |o|o|o|o|o|olo|o|olo|o
124
| HELP| [QUEUE| [PATCH| | MONITOR | | MENU | | BAY VIEW | [NETWORK VIEW |
7 7 7 7 7 T N N
!, l/ I/ I/ l/ \ \\ \\
5 56 104 106 58

U.S. Patent Sep. 19, 1995 Sheet 5 of 8 5,452,415

(RECONFIGURE),1 52
ENTIRE SYSTEM o

. v 150
CANCEL ALL SCREENS BEING | _-154 e
DISPLAYED ON WORKSTATIONS
DEACTIVATE AL ACTIVE SITES 196

QUERY USER AS TO HOW | 158
MANY NODES TO CONFIGURE
)
DELETE SITES FROM 160
ACD MONITORING
!
QUERY USER AS TO WHETHER |-162
THEY WANT TO RENAME SITES

166
v/
QUERY USER FOR UNIQUE

NAME FOR EACH NODE
BEING CONFIGURED
|

ALLOCATE HISTORY ARCHIVE FILES
FOR ALL NODES BEING CONFIGURED [™-168
T 1 /76
FOR EACH NODE QUERY USER EXPAND ALL GRAPHIC
AS 10 SK TYPE, SIZE, GROWIH L ... SUB-TEMPLATES TO MATCH USER
EPEBQTDOSU:\&(%A%JE REQUESTED CONFIGURATION
!
178 REBOOT MAIN PROCESSOR
CREATE LOADLISTS AND PLACE)
ALL MONITOR FILES ON LINE |_179 ASSENBLE CRAPHIC SCREENS
!
Syl < NSV ?CTIVATE SUPER REGISTERS |

'
: 182
0 ETD

FIG. 5

U.S. Patent Sep. 19, 1995 Sheet 6 of 8 5,452,415

200

ADD NODES 202 Ve
T0 SYSTEM :

CANCEL ALL SCREENS BEING - 204
DISPLAYED IN WORKSTATIONS

v

QUERY TO FIND OUT HOW MANY |~ 206
NODES (UP TO 39) TO ADD

FOR EACH ™ poNe 216

NODE BEING w
ADDED 208 COMBINE THE GRAPHIC
J SCREEN SUB-TEMPLATES
QUERY USER AS TO PDX TYPE, SIZE, | 51q v
GROWTH TYPE AND QUAD LAYOUT ~J ASSEMBLE (ABOVE SUB) SCREENS
IF PDX IS 1631 OR 1630 T
210 990~] ALLOCATE ARCHIVE FILES
IF FOR EACH NODE ADDED
YES RENAMING ¢

NODES IN

PY T TEMPLATES
EFFECT COPY ADDITIONAL TEMPLA

TO ON-LINE DIRECTORIES

QUERY NEW 2221 SO THAT NEW NODES CAN
UNIQUE BE MONITORED CORRECTLY
NODE NAME T
21/2 o 994 | FIX SECURITY FOR ALL NEW FILES
PREDEFINED [~ 914 v
NODE NAME STORE ALL SCREENS ON
[226”1 EACH DEFINED WORKSTATION
¥

ACTIVATE ACTIVE
228 | WORKSTATION DISPLAYS

v

REBOOT MAIN PROCESSOR

230

!
FIG. 6 232/< RETURN)

U.S. Patent Sep. 19, 1995

240

242\< RESIZE)
ONE_NODE
v

CANCEL ALL SCREENS

244~1 " BEING DISPLAYED
ON WORKSTATIONS

!
246~ QUERY USER AS T0

WHICH NODE TO CHANGE

v
DELETE ALL PREVIOUSLY
DEFINED SCREENS
FOR THIS NODE

v
QUERY USER AS TO
NEW NODE SIZE, AND
IF NODE WAS 1631 OR
1630 SX, QUERY USER
FOR QUAD LAYOUT

v
COMBINE GRAPHIC
SUBTEMPLATES T0
REFLECT NEW NODE SIZE

v
CREATE NEW SUPER
REGISTERS FOR
NEW NODE SIZE

v

ASSEMBLE ALL SCREENS
256-"| MADE IN THE PROCESS

258 A RETURN)

FIG. 7

248~

250~

252

2547

5,452,415

Sheet 7 of 8

260
y

QUERY USER AS TO SX 262
TYPE, SIZE, GROWTH
TYPE, AND QUAD LAYOUT

263

DONE 278

EACH NODE BEING
CONFIGURED,

CONFIGURE

RETURN

QUERY USER
AS TO SX TYPE

|~ 264

v

QUERY USER AS TO
NUBER OF PORTS

|~ 266

v

QUERY USER AS TO
RIGHT OR LEFT GROWTH

| ~268

270
YES

IF
SX TYPE = 1631
OR 1630 272

/

NO QUERY USER AS TO
QUAD LAYOUT OF 1/0
BAYS ACCORDING TO

PORT SIZE INPUT

v
BUILD QUAD SUB-
TEMPLATE COMBINATION
~DATABASE

BN

]
BUILD NODE GRAPHIC 274

SUBTEMPLATE

™\
COMBINATION DATABASE | ~276
T \

FIG. 8

U.S. Patent Sep. 19, 1995 Sheet 8 of 8 5,452,415

280

¥

282 SUB-TEMPLATE
EXPANSION

284 DELETE ALL PREVIOUSLY
™ COMBINED GRAPHIC TEMPLATES
AND ASSEMBLED OUTPUT

v

286~/ QUERY USER AS TO WHETHER PM
VIOLATIONS WILL BE REPORTED

288

290

PREPARE SUB-TEMPLATES WITH
PM REGISTERS TO BE USED IN
THE COMBINATION PROCESS

PM
REPORTING

PREPARE SUB-TEMPLATES WITHOUT
PM REGISTERS TO BE USED IN
THE COMBINATION PROCESS

r

PREPARE TOP LEVEL SCREEN FOR
294 - SUB-TEMPLATE COMBINATION

v

DELETE ALL PREVIOUS
296] DEFINED SUPER REGISTERS

v

PREPARE SUPER REGISTERS FOR
298 SUB~TEMPLATE COMBINATION

v
COMBINE SUB-TEMPLATES TO
300~ CREATE GRAPHIC REPRESENTATION
OF USER DEFINED CONFIGURATION

v
COPY ALL EXPANDED
GRAPHIC SCREENS TO
PRODUCTION DIRECTORY

v
304 /C RETURN)

FIG. 9

292~

302

5,452,415

1

METHOD AND SYSTEM FOR AUTOMATICALLY
DISPLAYING AND CONFIGURING A NETWORK
MONITORING SYSTEM

NOTICE: COPYRIGHT ((@©) 1992 Alcatel Network
Systems, Inc.

A portion of the disclosure of this patent document
contains material which is subject to copyright protec-
tion. The copyright owner has no objection to the fac-
simile reproduction by anyone of the patent documents
the patent disclosure as it appears in the patent and
trademark office file of records, but otherwise reserves
all copyright rights whatsoever.

TECHNICAL FIELD OF THE INVENTION

The present invention is concerned generally.with
electronics and more specifically with communications
systems. Even more specifically, the invention is con-
cerned with a method and system for describing the
operational condition of a communications network
monitoring system and includes the ability to automati-
cally configure the communications network monitor-
ing system at varying levels of complexity through the
use of easy-to-understand user templates that a user may
display on a computer screen.

BACKGROUND OF THE INVENTION

Digital cross-connect communications networks op-
erate under the control of computer systems that use
software to monitor and control the operation of the
communications network components. A problem re-
lating to effectively monitoring the communications
network components using these computers is under-
standing the use of and the signals generated by the
computer system software. Known network monitoring
systems use numerous software programs and multiple
databases to monitor and control even the simplest
communications network.

If the configuration of the communications network
changes, it is necessary for network system operators to
change much of the data that relates to the network.
The prior art systems make it necessary for operators to
do significant data entry and track large amounts of
data. These changes, however, require a high degree of
system knowledge and technical skill for successful
implementation. Skilled operators, however, are a lim-
ited resource, so there is a need for a method and system
by which less-skilled users may effectively monitor a
communications network without needing to perform
extensive data entry or to track vast amounts of detailed
data that the prior monitoring and controlling systems
require.

There is no easy-to-use tool between the software
that monitors and controls the communication network
components and the typical operators responsible for
these tasks. As a result, much operator error exists in
monitoring and controlling digital cross-connect com-
munications networks. These users need, in the event of
a network failure, extensive technical support to main-
tain the network in a normal operating condition.

The present invention attempts to overcome the limi-
tations of the prior art by providing a single tool to
monitor and configure a digital cross-connect commu-
nications network by interfacing with the software that
directly controls the network’s individual components.

In the event that a user seeks to reconfigure the commu-.

nications network, add a new node to the communica-

15

30

40

45

50

60

65

2

tions network, or expand the capabilities of a node al-
ready existing in the communications network, the con-
figuration system of the present invention automatically
changes the data files to reflect the communications
network status and control the software that interfaces
the components. These operations take place without
the need to directly use the numerous software tools or
input large amounts of network data.

It is also an object of the present invention to provide
a user-configurable system that provides a set of pre-
defined templates that may be combined in various
ways to represent all known network configurations of
a digital cross-connect network. The present invention
can be used with both large and small networks, be-
cause the size of the network affects only the variety of
subcomponent devices or their permutations as separate
elements in separate templates. The system interrogates
the user and, from the results of the interrogations,
either originally configures or adds to the network con-
figuration a database that the system formulates as a
result of combining the templates. The system then
displays to the operator a video screen and software
representation of the entire digital cross-connect com-
munications network or any part thereof.

The present invention not only vividly displays an
image of the node from which an error comes, but also
illustrates the specific subcomponent entities that emit
the error and may even display a representation of the
various error lights of a remotely located device that is
part of the node. An important feature of the monitor
display to the user is that, together with the accompany-
ing component controlling and monitoring software, it
is possible for a user to patch into any defined node of
the communications network to thereby permit efficient
handling any emergency or failure situation at a patched
into remote location.

By permitting a user to automatically configure a
digital cross-connect communications network repre-
sentation, the present invention minimizes operator
error, reduces the need for technical support, and less-
ens the need for sophisticated training on the part of the
system user. The system tracks its own changes and
integrates with the other files that contain data relevant
to the condition of the communications network. Fi-
nally, the system provides a flexible single system that
can apply to a virtually unlimited number of communi-
cations network configurations and that eliminates the
need for special tailoring of software control the indi-
vidual communications components of a communica-
tions network.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the present invention
will be apparent from a reading of the specification and
appended claims in conjunction with the drawings whe-
rei

FIG. 1is a possible digital cross-connect communica-~
tions network configuration problem that the preferred
embodiment of the present invention may assist to
solve;

FIG. 2 is an alarm summary template that provides
information that the present invention has the ability to
provide;

FIG. 3 is a communications bay template that is ob-
servable by manipulating the alarm summary template
of FIG. 2;

5,452,415

3

FIG. 4 is a shelf template that is observable by manip-
ulating the bay template of FIG. 3;

FIG. 5 is a flow chart of a method to reconfigure an
entire communications network in accordance with the
preferred embodiment;

FIG. 6 is a flow chart of a method to add a node to a
communications network according to the preferred
embodiment;

FIG. 7 is a flow chart of a method to resize one node
of a communications network using the preferred em-
bodiment;

FIG. 8 provides a flow chart of the steps that the
preferred embodiment takes to query a user as to certain
parameters of a communications node in accordance
with the preferred embodiment; and

FIG. 9 is a flow chart of the method for subtemplate
expansion according to the preferred embodiment of
the preferred embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

In FIG. 1, digital cross-connect communications net-
work 10 may include communication nodes such as
nodes 12, 14 and 16 which may be a 1633 SX Digital
Cross-Connect communications node made by Alcatel
Network Systems, Inc., and having the abbreviated
label “1633 SX” in FIG. 1. Each of nodes 12, 14 and 16
may be controlled by a management controller such as
manager controller 18. Suppose, for example, that com-
munications line 20 goes to communications node 12.
From communications node 12, a digital switching de-
vice that permits communications signals to pass from
one node to another, such as DSI22 switch link 22 may
connect to node 16. Suppose further that for some rea-
son (e.g., something cutting an associated underground
cable), the communications link 22 between node 12
and node 16 fails. Management controller 18 may con-
trol the operation of nodes 12, 14, and 16 by control
connections 24, 26 and 28, respectively. Through sys-
tem monitoring software, such as that provided for

"monitoring and controlling the 1633 SX node and sold
by Advanced Computing Devices, Inc., (ACD), a sys-
tem manager or user may determine that line 22 is sev-
ered. In response thereto, a user may direct manage-
ment controller 18 to control connections first between
node 12 and node 14 to establish a communications path
30 and then between nodes 14 and 16 to establish com-
munications path 32. With this control, it is possible to
maintain communications from input line 20 to output
line 34 with minimal interruption.

The purpose of the method and system of the pre-
ferred embodiment is to make operations similar to the
above example easier and faster. Additionally, the
method and system make monitoring the signals from
the ACD software much easier and potentially alert the
user faster to the exact source of a network failure. The
preferred embodiment achieves these results by provid-
ing templates to the operator that describe the operation
of a communications network visually and that permit
reconfiguring a communications network through using
these templates. Additionally, the method and system
provide to the user a set of visual indications that de-
scribe the operation of the system including indication
of errors, warnings, threshold conditions, and normal
system conditions. The discussion that follows describes
the user templates and the communications node recon-
figuration and control processes that the present inven-
tion makes possible.

5

15

20

25

30

35

40

45

50

65

4

In FIG. 2 appears alarm summary template 40 of the
preferred embodiment that a user may view to monitor
an entire digital cross-connect communications net-
work. The preferred embodiment provides a color out-
put that shows the status of each of the nodes or “of-
fices” that may comprise a communications network
such as network 10 of FIG. 1. For example, template 40
of FIG. 2 provides visual and audible data to describe
the status of three offices through an OFFICE block for
each office such as block 42 for OFFICE02. The pre-
ferred embodiment, however, has the ability to monitor
and configure up to 39 offices. For example, alarm sum-
mary template 40 may monitor nodes 12, 14 and 16 of
FIG. 1 as OFFICE(1, OFFICE02, and OFFICEQ03
respectively. MONITOR sub-block 44 of OFFICE
block 42 initiates a pop-up window to allow all real-time
messages received from node 14 to be viewed by the
user. OFFICEOQ2 sub-block 46 provides a label for OF-
FICE block 42, and provides access to the bay template
of OFFICE02. PATCH sub-block 48 initiates a pop-up
window that remotely logs into node 14 and displays
the 1633 SX main user interface menu. For example, the
preferred embodiment facilitates performing the opera-
tions that FIG. 1 describes by permitting the user to
patch into each office and use the 1633 SX menu system
to reconnect the path.

Legend block 52 provides a color legend to indicate
the meaning of each of the colors and other signals that
alarm summary template 40 may generate. The system
automatically adds legend block 52 to each screen as it
displays alarm summary template 40. This facilitates
changes to the legend and ensures that the system pro-
mulgates these changes to all the associated and appro-
priate templates. At the bottom of template 40, HELP
icon 54, QUEUE icon 56 and MENU icon 58, all appear
within template control block 60. HELP icon 54 per-
mits access to a HELP function associated with alarm
summary template 40, QUEUE icon 56 and MENU
icon provide access to an operation menu for the con-
trol of the system of the preferred embodiment.

The alarm summary template 40 is a network sum-
mary screen that indicates on a single template the com-
plete status of the nodes of a communications network
that a user desires to monitor. Template 40 is dynamic in
the sense that only the number of nodes that the user
selects to configure are seen upon completion of the
expansion scripts. As will be discussed later, the expan-
sion scripts relate to the steps that a user undertakes to
configure a digital cross-connect communications net-
work. The colors of template 40 assist a user to deter-
mine the network status. For example, on alarm sum-
mary template 40, a the OFFICEO02 text blinks red to
indicate a critical/major error, yellow to indicate a
minor error, green to indicate a threshold condition.
The OFFICEQ2 text stay a solid green light to indicate
a normal condition.

In FIG. 3, bay template 70 shows the status of the
operation of OFFICE02 that alarm summary template
40 of FIGURE02 monitors and block 42, for example.
Bay template 70 shows that OFFICE02 includes two
bays, Bay 2 designated at block 72 and including the
shelves that bracket 74 bounds and Bay 3 designated by
block 76 and including shelves that bracket 78 bounds.
As used herewith, a bay is a portion of a communica-
tions node that consists of one or more shelves to have
various subcomponents. Bay 2, for example, includes
RSP shelf 80, APU shelf 82, TSI shelf 84, PWR shelf 86,

5,452,415

S
and a second TSI shelf 88. Bay 3 includes RSP shelf 90,
and I/0 shelves 92, 94, 96, and 98.
The following table defines the acronyms for the
components that support a digital cross-connection
communications network.

Acronym Explanation

APS Administrative Processing System
APU Administrative Processing Unit Card
Cs Center Stage

DSI Digital Signal Interface Card

170 Input/Output

IPU Integrated Processing Unit Card
LTX Line Termination

PSF Power Supply Card

PWR Power Card

TD Tape/Disk

TSI Time Slot Interchange Card
Xcv Transcalent Card

As in FIG. 2, network status block 50 and legend
block 52 communicate, respectively, the alarm status of
the network and explanations of colors or other indica-
tions to assist the operator to understand the template 70
displays. Link status block 100 informs the operator of
the status of the links between the various offices that
alarm summary screen 40 monitors.

Block 102 of FIG. 3 is similar to block 60 of FIG. 2
and provides access to a HELP function via HELP icon
54, a queue function via QUEUE icon 56, a patch func-
tion via PATCH icon 104, a monitor function via
MONITOR icon 106 and access to other portions of the
system via MENU icon 58. NETWORK VIEW jcon
108 permits the user to return to alarm summary tem-
plates 40 of FIG. 2.

In FIG. 4 appears 1/0 shelf representation 110 that
more particularly shows the components of 1/0 shelf
92, Label 112 indicates that the display of shelf template
110 corresponds to OFFICEQ2 Bay 3 Shelf 1 which, in
this case, corresponds to I/0 shelf 92 of FIG. 3. Label
114 provides the name for the representation 110 as a
“1631 SX 170 SHELF.” Legend block 52 and network
status block 50 perform the functions previously de-
scribed. Within I/0 shelf 92 are numerous DSI mod-
ules, such as the DSI 22 module designated as 116.
Additionally, I/O shelf 92 includes other switching and
control units, such as IPU 1 unit 118, PSF 1 unit 120 and
XCV 2 unit 122. On each device such as the DSI 22
module designated as 116, IPU 1 unit designated as 118,
PSF 1 unit 120, and XCV 1 unit 122 appear indicators
such as indicator 124. Each of these indicators 124
shows green, yellow or red depending on the status of
the associated unit. Block 126 includes HELP icon 54,
QUEUE icon 56, PATCH icon 104, MONITOR icon
106, and MENU icon 58, all to operate as previously
described. Block 126 includes NETWORK VIEW icon
108 and BAY VIEW icon 128. NETWORK VIEW
icon 108 permits the display of alarm summary template
40 and BAY VIEW icon 128 permits viewing bay tem-
plate 70.

Alarm summary template 40 of FIG. 2, bay template
70 of FIG. 3, and 1/0 shelf template 110 of FIG. 4 relate
with one another so as to indicate alarm conditions
whenever one of the devices of I/0 shelf 92 experiences
an alarm condition. For example, suppose DSI 22 mod-
ule 116 provides the connection between node 12 and
node 14 of FIG. 1. If a disconnect exists with DSI 22
module 116, then an alarm condition will indicate at
indicator 124 of DSI 22 module 116 in the 1/0 shelf

5

10

15

20

25

40

45

S0

55

60

65

6

template 110 of FIG. 4. Additionally, NETWORK
STATUS light 50 of FIG. 4 will indicate the alarm
condition by flashing the same color as indicator 124.
For example, when the OFFICEOQ2 that flashes red, so
will the NETWORK STATUS light 50. The I/0 shelf
icon 92 will indicate flashing red on bay template 70 and
NETWORK STATUS 50 also to indicate the flashing
red. Furthermore, at alarm summary template 40, OF-
FICEO02 will flash red indicating an alarm condition. On
all three templates, alarm summary screen template 40,
bay template 70, and I/O shelf template 110 NET-
WORK STATUS block 50 will flash red per our exam-
ple of indicates 124 flashing red. If indicator 124 flashed
yellow, then the template as described above would
flash yellow.

The present invention takes the output of existing
software that monitors the electronic component of a
digital cross-connect network and provides to the user
the reports and displays of network operation. By inter-
facing with appropriate control and monitor ACD soft-
ware, the preferred embodiment provides the monitor-
ing functions of FIGS. 2-4. Moreover, through the
monitoring functions of FIGS. 2-4, it is possible to more
accurately and reliably control the operation of the
ACD software. The templates that FIGS. 24 show, for
example, permit a user to configure the components that
the ACD software controls by permitting a user to
structure the elements of each of the templates.

The SX switch hardware generates alarm signals in
what is known as the TLI format of the Bellcor alarm
standard. For a TLI formatted alarm, the method and
system of the present invention generate color-coded
alarms that appear at each of the templates of FIGS.
2-4. A significant difference between the previous
method of monitoring communication components and
the method of the preferred embodiment is that the user
supplies substantially fewer inputs to configure a net-
work. This is because the prior network configuration
methods require direct manipulation and access to a
multiple of individual, but interrelated, program files.
The user employs the present invention, on the other
hand, to automatically input much of the previously
manually input data. Additionally, a user may monitor
and configure a communications network through the
use of a dialogue that poses to the user certain queries
and for which the user provides data and instructions
for configuring and monitoring the communications
network. ‘

The following discussion relates to FIGS. 5 through
9 that show flow charts of the various configuring and
communications network change functions of the
method and system. For instance, the method and sys-
tem of the preferred embodiment permit the user to
completely change the graphical representation of the
network upon demand. To achieve this functionality,
the templates that represent 1633 SX bays and shelves
have been reduced to templates. The templates repre-
sent all levels of integration necessary to configure a
1633 SX node. The templates include each bay repre-
sentation that the 1633 SX supports and each kind of
shelf of a 1633 SX bay. The bay templates of the pre-
ferred embodiment represent, for example, provide
64-port, 2-or 3-bay representations; 128-port, 2- or 3-bay
representations; a 256-port representation with either an
APU or an APS bay; a 512-port representation with
either an APU or an APS bay; a 1024-port and 2048-
port representation of a 1633 SX digital cross-connect
network node. The user configuration process includes

5,452,415

7

the ability to select these bay representations in either a
right-growth or left-growth format. The terms right-
growth and left-growth mean, respectively, that in such
a system if another bay were added to the system, the
template shows on the right, left side of the existing
bays. This representation of the templates accurately
reflect the hardware representation that user seeks to
monitor. The 1633 SX shelf templates include a repre-
sentation of the RSP, LTX, means line termination,
APS, TD, means tape/disk, APU, 1/0, CS, means cen-
ter stage and PWR shelves.

The preferred embodiment may also provide all lev-
els of integration necessary to conFIG. 1631 SX and
1630 SX Digital Cross-Connect communications net-
works.

The templates are used in a unique expansion tech-
nique where the user has complete control of the final
graphic network representation of the system. During
the reconfiguration process, the user is queried as to
how to size the network. This sizing includes interro-
gating the user for the network node count, the port size
of each node, the growth format of each node and the
node name. Support files are then created which are
used by the expansion scripts. The expansion scripts aid
the system to accomplish its essential functions. Expan-
sion scripts use information input by the user to config-
ure the graphics templates of FIG. 2 through 4, above,
that describe the communications network. The scripts
enable the system to modify the templates and, by a
process of duplication and modification, create bay and
shelf templates such a templates 70 and 110, respec-
tively having the correct register and screen link infor-
mation. The modification process uses a batch editor to
cut known patterns from the template files and replace
these strings with the correct string to make the screen
function properly. Some of the information that is modi-
fied includes the site name and the bay and shelf loca-
tion of the template.

The user may configure the template at FIGS. 2
through 4 in various combinations so that the resulting
set of templates accurately reflects the configuration of
1633 SX digital cross-connects, for example, in a digital
cross-connect network. The system adjusts the tem-
plates so that by using standard utilities such as those
that ACD provides to configure a network, a user may
form a complete set from just a few templates styles.
The templates and the expansion scheme of the pre-
ferred embodiment cause changes to all applicable
graphic templates using only a few screen text files.
Then, these changes are automatically expanded to the
number of screens that the user requests during the
configuration process. Thus, by editing a few files with
the new changes, all the screens of this template type
will automatically receive the same changes.

The method and system use a color coding scheme to
help the user decide how to control the system. For
example, the system encloses icons in a gray box to
indicate a connection to a zoom screen, while icons in a
magenta box indicate a query action.

The method and system permit the user to perform
four essential functions to monitor and control a com-
munications network. The first function is to install the
system to communicate with the ACD software that
controls the communications components of the digital
cross-connect network. The second function is to re-
configure the entire system after initial installation. The
third function is to add nodes to the system. The fourth

15

25

35

40

45

30

55

65

8

is to resize the node to reflect a change in the size of
node.

The reconfigure system command is used when the
communications network is to be completely changed.
Any previous configuration is completely erased and
replaced by this new configuration. The user may initi-
ate this process by entering a “Reconfigure the System”
command to the system. The preferred embodiment
allows the user to input this command by its selection
from a utilities menu of available system utilities. Upon
selecting the “Reconfigure the System” command, the
user gains access to a sub-menu containing the three
types of system configurations a user may perform with
the preferred embodiment, including 1) reconfigure the
system, 2) add one or more nodes to the network, or 3)
resize one node. The following discussion highlights
operator dialogue that the preferred embodiment pro-
vides and discusses the flow of each process through the
use of respective flow charts or diagrams appearing in
FIGS. 5-9. '

In FIG. 5, reconfigure flow chart 150 shows that the
reconfigure process begins with the reconfigure entire
system step 152. Upon receiving this command, the host
computer for the software performing the reconfigura-
tion will cancel all screens being displayed on work
stations at block 154. Then, at block 156, the reconfig-
ure process deactivates all active sites. At block 158, the
system queries the user as to how many nodes to recon-
figure. Then, the reconfigure software process deletes
the sites from the ACD controlling and monitoring
software. After that, at block 162 the system queries the
user as to whether they want to rename the sites. If they
do, then at query response block 164, program flow
goes to query the user for unique names for each node
being configured, at block 166. If the rename sites query
receives a “NO” answer, then at block 168 the system
allocates history archive files for all nodes being config-
ured. Next, for each node the system queries the opera-
tor as to the SX type, the size, the growth type, and
quad layout if the SX is of the 1631 SX or 1630 SX type
at block 170. At block 172, the system creates loadlists
and places all monitor files on line for all nodes being
configured. Then, at block 174 the system activates all
nodes that were configured. At block 176, the system
expands all graphic sub-templates to match the user
requested configuration. The system reboots the main
processor, then, at block 178 assembles graphic tem-
plates and Super Registers at step 180. Finally, at block
182 the reconfiguration process activates the Super
Registers and resumes the monitoring function at block
184.

FIG. 6 shows a flow chart 200 for using the preferred
embodiment to add a node to a digital cross-connect
communications network. For example, suppose that
communications network has three nodes and a user
seeks to add a fourth or fifth node to bring in two more
cross-connects. Instead of having to reconfigure the
entire system, the method and system permit the opera-
tor to simply add a node. Flow chart 200 shows the
process for adding a node which begins at block 202. In
response to the command to add nodes to the system, at
block 204 the process cancels all screens being dis-
played on work stations and then queries the operator
to find out how many nodes (up to 39 for the preferred
embodiment) to add to the system at block 206. Then,
for each node being added the process queries the oper-
ator as to the RDX type, the size, the growth type and
the quad layout if the RDX is a 1631 or 1630 type at

5,452,415

9

block 208. With this information, the system then uses
the answer to a previous reconfiguration system rename
node query to determine whether the renaming nodes is
in effect at block 210. If so, then, at block 212, the sys-
tem queries the user for the new unique node name. If
not, then process uses the predefined node name at
block 214. Then, the adding node procedure, for each
node being added combines the graphic screen sub-tem-
Pplates at block 216 and assembles the screens at block
218. At block 220 the system allocates archive files for
each node being added. Then, the next step is to copy
additional templates to on-line directories so that new
nodes may be monitored correctly at block 222. Fixing
security for all new files is the next step at block 224. At
block 226, the process stores all screens on each defined
work station. Activating the active work station dis-
plays occurs at block 228. Finally, the adding node
process reboots the system at block 230 and returns
control to the MONITOR displays at block 232.

The Super Register expansion capability of the pre-
ferred method and system parallels the expansion of the
graphic templates in the respect the user defines a net-
work configuration. The graphic screens are expanded
accordingly to represent the configuration as are the
Super Registers, so that the summary registers on the
various graphic templates properly reflect a lower level
alarm status. “Super Registers” is an ACD trademark to
describe a facility for reporting to a user the highest
alarm status appearing in a communications network. A
Super Register may contain various “base registers”
and other “Super Registers” that associate with a par-
ticular graphic icon to reflects the status of the icon.
“Base register” is also an ACD trademark. If a particu-
lar Super Register contains a base register that is reflect-
ing a major alarm and another base register reflecting a
minor alarm, the Super Register’s status will be a major
alarm indication. Both Super Registers and base regis-
ters allocate storage in the “MegaRay” (another ACD
trademark). The MegaRay ties the receipt of event
messages from the network to the change of status of
graphic icons.

Super Registers are expanded with a series of scripts,
similar to the expansion process for the graphic tem-
plates in the respect that only the appropriate base regis-
ters are added to the summary Super Registers, depend-
ing on the configuration that the user requests. Super
Register expansion occurs after template expansion for
a node has been completed. The set of Super Registers
for a node depends on several factors including the kind
of SX, the size of the node, whether performance moni-
toring icons are to be lit or not, the quad layout of the
1/0 shelves of a 1631 or 1630 SX node. This informa-
tion was input by the user who configures the network.
This information is kept in many files contained in a
directory structure to support the present invention.
The Super Register expansion process uses these files
when appropriate to correctly expand the Super Regis-
ters to contain the exact base registers necessary for the
Super Registers to function correctly.

In FIG. 7, flow chart 240 shows the process flow to
resize one node of a network using of the preferred
embodiment. The resize one node function has applica-
tion, for example, in the situation where a user desires to
expand a network node in capability but does not have
the need to increase the number of nodes. This may be,
for example, because the user expanded a node’s capa-
bility to handle more circuits. If a single node is to
expand, instead of reconfiguring the entire system, all

20

25

30

35

40

45

60

65

10

that is necessary is to change the graphical representa-
tion of the system. This permits alarms, when they oc-
cur, to light on the associated ions correctly. Therefore,
the resize one node function begins at block 242 which
starts the process in response to a user command to
resize one node. In response to block 242, at block 244
the system cancels all screens being displayed on the
workstation and then queries the user, at block 246 as to
which node to change. Note, in order to change a node
it must have been previously defined. At block 248, the
resize one node function deletes all previously defined
screens for this node. At block 250, the system queries
the user as to the new node size, and if the node was a
1631 SX or 1630 SX node, as well as for the quad lay-
out. At block 252 the function combines graphic sub-
templates to reflect the new node size. At block 254, the
system creates new super registers for the new node
size. Further, at block 256 the system assembles all
templates made in the process and then at block 258
control returns to the monitoring functions.

FIGS. 8 and 9 more particularly explain the operation
of certain steps within the functions of FIGS. 5, 6 and 7.
FIG. 8 provides flow chart 260 to show the steps that
take place when the system queries the user as to the SX
type, node size, growth type, and quad layout. If this
query occurs, then program flow goes to block 262. At
block 263, the program determines whether there are
any nodes left to configure. If there are, the program
loops and queries the user for information about each
node being configured. The system first queries the user
as to the SX type at block 264 and, then, the number of
ports at block 266. At block 268, the step is to query the
user as to the right or left growth characteristic that the
user desires of the templates. If the SX type is 1631 or
1630, then query 270 directs program flow to block 272.
At block 272, the system queries the operator as to the
quad layout of the 1/0 bays according to the port size
input. Then, at block 274 the process builds a quad
sub-template combination database and goes to block
276. Program flow may also go to block 276 if the SX
type is neither a 1631 SX or 1630 SX. At block 276, the
process builds the node graphic sub-template combina-
tion database and causes flow to go to the next node, or,
if all nodes have been addressed to return at block 278.

An important part of each of the functions of the
preferred embodiment is sub-template expansion. In
FIG. 9, flow chart 280 describes the program flow of
the sub-template expansion functions of the preferred
embodiment. Beginning at block 282, the sub-template
expansion process goes to block 284 which deletes all
previously combined graphic templates and assembled
output. Next, at block 286 the process queries the user
as to whether performance monitoring violations will
be reported. If performance monitoring or PM report-
ing is to occur, then at query 288 program flow goes to
block 290 which prepares sub-templates with perfor-
mance monitoring registers to be used in the combina-
tion process. On the other hand, if performance moni-
toring reporting is not to occur, then at block 292, the
function prepares sub-templates without performance
monitoring registers to be used in the combination pro-
cess. After either block 290 or 292, as appropriate, pro-
gram flow continues to block 294 to prepare a top-level
screen for sub-template combinations. Next, at block
296 the system deletes all previously defined super reg-
isters and at block 298 prepares super registers for sub-
template combination. At block 300, the sub-template
expansion function combines sub-templates to create

5,452,415

11
graphic representations of the user-defined configura-
tion. Then, at block 302, all expanded graphic templates
are copied to a production directory and flow returns at
block 304.

Although it is believed that the present specification
and drawings fully and accurately described the system
and provides sufficient information so that anyone
skilled in the art may practice the inventive concept, we
additionally include, as “Unpublished Appendix A” (as
an appendix to remain unprinted) a copy of the working
source code to enable a computer to operate as the
network configuration control system that performs the
functions of the flow chart of FIGS. 5-9 detailing the
information necessary to permit the user to configure
and monitor the network.

OPERATION

The information provided thus far in the background
and detailed description tends to render the operation
obvious to one skilled in the art. However, it is believed
that a few comments relative to the operation and spe-
cial features are still appropriate.

The method and system of the preferred embodiment
permits a user such as a network system administrator
to completely change the graphic representation of the
network upon demand. There are four methods avail-
able to aid in the creation of network template represen-
tations. The four ways include: initial system configura-
tion, configuring the entire system after the initial sys-
tem configuration, appending new nodes to an existing
network, and resizing an existing node. Each of these
" commands has an extensive user dialogue to query the
user as to the exact representation of the configuration
he desires. Once the user answers the interrogatories,
the system executes appropriate template expansion
scripts to achieve the network representation the users
wants. Subsequent processing may also include creating
new site control files and making them active, creating
appropriate history files for new nodes, and placing any
appropriate pre-defined report criteria files on-line.

To help illustrate the dialogue that a user sees and to
identify the actions taking place in the dialogue, the
following discussion lists the prompts that the user sees
as indented from the left margin of the following text.
Beginning in response to the command to reconfigure
the system, the first prompt is,

DO YOU WISH TO PROCEED (Y/N)?

The above prompt allows the user to abort the reconfig-
uration without losing any previous configuration. If
the user attempts to abort abnormally after this prompt,
in the preferred embodiment, the system may be left in
an undetermined state with respect to being able to
correctly monitor a communications network.

Next, the system provides the following information
to the user:

THE 2100 WORKSTATIONS CAN BE DIS-
PLAYING GRAPHICS DURING THIS PROCESS.
ALL SCREENS BEING DISPLAYED ON GSD
DISPLAY WINDOWS WILL NOW BE CAN-
CELLED BEFORE PROCEEDING.

INSTALL HOW MANY SX’s (1-39)?

ANSWERING WHY TO RENAME THE CITES
PROMPT ALLOWS THE USER OF CUSTOMER-
DEFINED NAMES FOR THE SITES BEING
MONITORED. ANSWERING N MAKES THE
CITE NAMES 01 FOR SITE 1, ETC.

DO YOU WANT TO RENAME THE SITES

Y/N)?

5

10

15

20

25

30

35

: 12
If a Y is entered for the rename site prompt, then the
system repeats the following line for as many nodes as
there are in the system. If the user answers with an N,
the systems names the sites OFFICEO1 through OF-
FICEXX, where XX is a two-digit number that repre-
sents the number of nodes in the communications net-
work. The node number that the system uses is the
answer that the user has already provided to the “Install
How Many SXs” prompt, above.
- Next, the system prompts the user to,

ENTER NAME FOR SITE X (1-8 CHARS);
Here, X is a number from 1 to the number of nodes in
the communications system. This node number (of de-
fined nodes) also is the answer to the “Install How
Many SXs” prompt. The site name that a user enters is
tested for correct format and length. For example, in
the preferred embodiment, the site name must start with
an alphabetic character and may be followed by up to 7
alpha numeric characters. Also, the system checks the
input site name for duplication. All site names in the
communications network must be unique. Then, for
each site, the system communicates with the user to
configure a site beginning with the following dialogue:

CONFIGURE SITE X:

ENTER SX TYPE (33, 31, 310)?

If the type that the user enters is a 33 type, this indicates
to the system that this node includes a 1633 SX digital
cross-connect. Then, the system displays the following
prompt:

ENTER #PORTS (64, 128, 256, 512, 1024, 2048)?
If the user desires a 64-port or 128-port 1633 SX, the
system displays the following prompt:

ENTER #BAYS (2, 3) ?

This prompt is necessary because the 64-port and 128-
port 1633 SX cross-connects may be configured in a 2-
or 3-bay configuration. If the user desires a 256-port or

. 512-port 1633 SX, the system displays the following

45

50

55

65

prompt.
DOES THIS SYSTEM CONTAIN ANAPU
SHELF (Y/N)?

This prompt is necessary, because the 256-port and
512-port 1633 SX may be configured using an APU bay
or an APS bay control system.

If the user enters 31 in response to the “ENTER SX
TYPE” prompt, the system determines that the node
contains a 1631 SX digital cross-connect. In response,
the system displays the following prompt:

ENTER #PORTS (8, 16, 32, 64, 128, 256)?

If the type that the user enters in response to the
“ENTER SX TYPE” prompt is 310, this indicates to
the system that the node includes a 1630 SX digital
crossconnect. In response, the system displays to the
user the following prompt:

ENTER #PORTS (8, 16, 32) ?

Then the system irrespective of whether the user input
a 33, 31, or a 310 in response to the “ENTER SX”
prompt, will prompt the user as follows:

ENTER RIGHT OR LEFT-GROWTH REPRE-

SENTATIONS (r,1)?
The system uses the above prompt lines for each site
that the user configures. If the type of SX that the user
selects is a 31 or 310 type, the system provides the fol-
lowing dialogue to configure the “QUADS” or four
sections, of the I/0 shelves that these systems contain.
In other words, the I/0 shelves of the 1631 and 1630 SX
digital cross-connects are separated into four quadrants.
The dialogue that the user receives to configure the
QUADS starts with the prompt.

5,452,415

13
IS SX SYSTEM A MIX OF DSI AND LMU/HMU
CARDS (Y/N)%:
This prompt facilitates filling the template expansion
data base for the entire system. If the entire SX system

is to be either filled with DS3s only or DS1s only, the 5

user should answer N to this prompt. Answering Y
causes the system to prompt the user for each 1/0 bay
QUAD configuration. Now, if the user entered N to the
previous prompt, the system provides the following

prompt: 10

ENTER THE SYSTEM RESOURCE TYPE (ds3,
dsl):
At this point, the screen expansion database for the
system is correctly filled for the node that the user is

configuring as either an entire DS3 system or a DS1 15

system. On the other hand, if a Y is entered to the “Sys-
tem Mix” prompt, the user may configure an entire bay
in a similar fashion. For each bay of the node that the
user configures, the user receives the following prompt:

IS BAY X A MIX OF DSI AND LMU/HMU
CARDS (Y/N)?: :
This prompt facilitates filling the screen expansion data-
base for this entire bay. Each bay of the node that the

user configures will be prompted in this fashion. The X ,5

is the I/0 bay number for the bay being configurated. If
the entire bay is to be either filled with DS3s only or
DS1s only, the user should answer N to this prompt.
Answering Y to this prompt directs the system to

prompt the user for each 1/0 shelf QUAD configura- 3,

tion.

If in response to the previous “BAY MIX” prompt,
the user answers N, the user receives the following
prompt:

ENTER THE BAY RESOURCE TYPE (ds3, ds1); 35

At this point, the system has correctly filled the tem-
plate expansion database for the bay that user is config-
uring as either an entire DS3 bay or a DS1 bay. On the
other hand, if the user enters a Y to the “BAY MIX”

prompt, the system requires that the user configure each 40

shelf separately for the bay. Thus, for each bay shelf of
the node that the user is configuring, the system
prompts the user as follows:

CONFIGURE BAY X SHELF Y QUAD 1:

Enter QUAD 1 type (ds3, dsl, empty); 4

CONFIGURE BAY X SHELF Y QUAD 2:
Enter QUAD 2 type (ds3, ds1, empty):
CONFIGURE BAY X SHELF Y QUAD 3:
Enter QUAD 3 type (ds3, dsl, empty):

CONFIGURE BAY X SHELF Y QUAD 4: 50

Enter QUAD 4 type (ds3, dsl, empty):

Here X displays the current bay number that the user is
configuring. The system controls this number by the

size and type of SX that the user configures. The vari- 55

able Y displays the current shelf that the user is config-
uring. The system controls this number by the size and.
type of SX that the system configures.

Upon responding to these prompts, the system pro-

vides to the user the following statements: 60

WAITING FOR HISTORY FILE ALLOCATION
TO COMPLETE COPYING REPORTS, COM-
MANDS, QUERIES

CUSTOMER GRAPHICS CONSIST OF A SE-

RIES OF LAYERED TOPICAL, NETWORK REP-

RESENTING, GRAPHICS. IF YOU HAVE THESE
SCREENS, ANSWER Y.
DO YOU HAVE CUSTOM GRAPHICS (Y/N)?

14

The system uses the custom graphics prompts to back
link the alarm summary template to any user/define
graphics that may be layered above the SX network in
the alarm summary template. The next response from
the system is the following:

PERFORMANCE THRESHOLD CROSSING
EVENTS WILL CAUSE THE ASSOCIATED
ICON TO FLASH GREEN. IF YOU DESIRE THIS
KIND OF MONITORING ON THE SX NODES,
ANSWER Y.

DO YOU WANT SX PM ICONS TO LIGHT (Y)?
The performance threshold crossing prompt controls
whether the system creates additional registers to cor-
rectly reflect the receipt of performance monitoring
events from the monitored network. Answering Y to
this prompt causes the system to allocate the additional
registers. Answering N, will prevent the ICONSs of the
templates of FIGS. 2-4 from reflecting the receipt of
performance monitoring events from the communica-
tions network. At this point, the system will create
screen names and display the file names for the screen
that the system creates. Finally, the system will provide
the following input:

SYSTEM IS NOW GOING TO REBOOT AUTO-
MATICALLY.
This completes the user dialogue for the reconfigure
system process of the preferred embodiment. Although
designed for the respective specific applications, the
user dialogue for adding a node to a communications
network and expanding an existing node of a communi-
cations network operate in a similar fashion.

In summary, the concept of the present invention is to
provide a method for automatically configuring and
monitoring a network comprising a plurality of compo-
pents, the method including the steps of the associating
a plurality of user templates with the plurality of levels
of integration of the components so that a user template
associates with each of the levels of integration and,
then, further associating each of the user templates with
other of the user templates to permit error conditions
existing at one of said components to indicate a plurality -
of error signals on predetermined ones of the user tem-
plates and, further communicating instructions and
queries through a display so that the instructions and

- queries associate with the error signals and the levels of

integration, then configuring the network and response
to the instructions, as well as altering the user templates
and the levels of integration in response to the configur-
ing of the network to finally display the altered tem-
plates to indicate the configured network and the al-
tered levels of integration.

While a specific computer has not been illustrated for
performing the present technique, it will be realized by
those skilled in the art that any general purpose com-
puter may be programmed in accordance with the flow
of diagrams illustrated and that special purpose digital
and analog computers may be designed specifically for
implementing the present technique. Moreover, while a
specific embodiment of the present invention has been
disclosed, it is also to be realized by those skilled in the
art that various other implementations may be origi-
nated to accomplish the inventive concepts of using a
variety of interrelated user templates to control and
monitor the component software for a digital cross-con-
nect communications network. Thus, we wish to be
limited only by the scope of the impending claims.

5,452,415
15

APPENDIX A

Mcdule Name is activate all_screens

/usr/mnsc/gsd/obj/stproc > /dev/n i << ECF
request

alarm

cwslxl

EQF .

request -
alarm
cws2x1l

ECF

/usr/mpsc/gsd/obj/stbrcc > /dev/null << EQF
request

alarm

cws3xl

.

s
EOF

/us*/mnsc/gsd/oo1/storcc > /dev/null <K ECF
request

alarm

cCws4xl

Z0Fr

/usr/mnsc/gsd/obj/stproc > /dev/null <K
request

alarm

cwsSxl

td
e}
Ty

EOF

‘/usr/mnsc/gsd/obj/stproc /céev/null << ECOF
request -
alarm

cwsbxl

EQOF
. Jusr/mnsc/gsd/obj/storec
request

alarm

cwsTxl

«

~
o)
o
<i

~
)
=
o
’-l

<

33}
(@]
]

ECF

Jusr/mnsc/gsd/obj/stproc > /dev/nu
request

alarm

cwsBxl

<< EOF

'_l
}s

ECF
Module Name is activate sites

cd fusr/ava/lnstall
/usr/mnsc/mla/obj/acprqc > /dev/null << EOF

/usx /mnsc/gs /obj/stprcc > /dev/nu 11 <K Ebf“:fﬂ"iu

16

5,452,415
17 18
activate
c—mnsc

RIPUL . e

EQF

sleep 5

/usr/mnsc/mla/obj/acproc > /dev/null << EOF
activate

ccdex

RIPUL

o »

EQF - -

for site in cat .site names

do

/usr/mnsc/mla/obj/acprecc > /dev/nuil (< EOF
activate

Ssite

RIPUL

EQF
done

Mcdule Name is build_scr

file2="cat /usr/ava/install/.quest_£i
rédxmum=$1

was= pwd :
" cd /usr/gsd/sys/symtab I R PSR
m -rf.x .) ST R s
-ed /usr/gsd/sys-* e : S R
m valig ===.-~ 77T 7 T Lo e
touch valid
cp /usr/ava/dev gsd/ramsawe /dev/gsd/ramsave _
for i in “cat usr/ava/install/.screen _names

do
m - /usr/gsc/sc:een/te:t/Si
base= basename $i .scz
rm -f /usr/gsd/screen/assemble/S${base}
done

rm —-f fusr/ava/install/.screen_names
touch Jusr/ave/instzall/.screen pames
m -f /usr/ava/inscall/scr_by_site/>
while : +? ’
éo

echo ” "
echo "Custom Graphics consists of a series of layered topographical,”
echo "network representing, g*a: ic screens. If you have these screens,”
echo "answer Y."
echo " 1
echo —n "Do you have Custom Grachics (Y/M)? ¢
echo "QUESTION: Do veu have Custca Graphics?® >> $File?
read choice
echo "RESPONSE: Schoice" >> $iiie2
cd fusr/ava/screens/rcdx33
case $choice in

YTY | yes | ¥zs)

echo "1" > /usr/ava/install/.custcm_flag

5,452,415
19 20
custom=1 ; _
break '

{lﬁ | no | NO)
echo "0" > jusr/ava/instzll/.custcm flag

custom=0 *
break
i B
=)
echo "Invalid choice-Pleass try again”
echo "PRO¥PT: Ianveliid c"v_c=—P1=as= try again™ >> S$file2
continue '
esac
done
while : : . . .
-dO) s
echo " "

echo "Performance Threshold Crcssi“g events will cause the associated"
echo "Icon to flash green. IZf you desire this kind of monitoring on”
echo "the SX Nocdes, answer Y."

echo " " - .

cho -n "Do you want SX oM Iccns zd Light (Y/N)? "

echo "QUESTION: Do you want SX FX Icons to Light?" >> $file?
read choice

echo "RESPONSE™~ $choice" >> $file2
case Schoice is
Y|y | yes | YES)
echo "1" > /usr/ava/inst all/ pm flag
cd /usr/ava/screens/rdﬁlo
cp v/pm-viclations/make_. lxxx
s ! /usr/ava/screens/rdel
..cp . /pm violations/make lzxx L]
Jcd 7dsr/ava/super.: reglsters/BB T S e e
cp T/pm violations/* . - ST
cd /usr/ava/screens/rdx33
cp :/pm_violations/r3il2l.cri .
break

rr

| o | no | NO)

echo "0" > /usr/ava/instalil/.pm fiag
cd fusr/ava/screens/rdx3l0 - 7
cp ./non_pm/make ixxx .

cd /usr/ava/screens/rdx3l

cp -/non_pm/ma<= i .

¢cd fusr/ava/super_registers/33

cD ./non_pm/* . .
cd /usr/ava/sc:eens/rdeS

cp ./non_pm/make ixxll

cp ./non_pm/r3il2l.ori .

break

i

=)

echo "Invall
echo "PROMPT
continue

¢ choice-Plez r7 again”
: Invalid choice-Please try again" >> S$filel

esac_
don
cd /usr/ava/screens 4
./alarm_ sunrxa‘r'y/mak‘= alarm $custem
if [1 -d fusr/gsd/sys/sr_deiipiticrn/SR/MIA]

then .
mkdir susr/gsd/sys/sz_cdefiniticn/SE/MIa i
else

¢d Jusr/gsd/sys/sz, _Ce :'n‘*’on/S“/Y“’
rm —f summary

whils read - -sitename

co

5,452,415
21 / 22
ra -f S$sitenams '
dona < fusx/ava/instzll/.site namess.old
fi ' :
cat fusr/ava/super_registers/neiworX >> fusr/gsd/sys/sr_definition/S2/40.3
< : /

bobaiont—hay'4

cé /usr/ava/scresns)

.cp rdz_cnifg.parms rdx_cnfg.parms.imd .

paste rdx_cnig.parms.tmp /usr/ava/install/.site_nemes.) rdx_caig.parms
rm rdx_cnfg.parms.tmp L

make_screens 1
CoDpy_screans
cd Swas

Module Name is cancel_all_ screens

/usr/mnsc/gsd/obj/stproc > /dev/null << EOF
cancel

all

cwslxl

EOF . e e A
susr/mnsc/gsd/obj/stproc > /dev/null << EOF
request -
wait

cwslxl

ECF
/usr/mnsc/gsd/obj/stproc
cancel
all _
cws2x1l C

> ' -

v

/dev/nuil << EQF

ECF

/usr/mnsc/gsd/obj/stproc > /dev/null <«
request

wait

cws2xl

53}
[@]
'

EQOF

/usr/mnsc/gsd/obj/stproc > /dev/null << EOF
cancel- i '
all

cws3xl

ECF :
/usr/mnsc/gsd/obj/stproc > /dev/null << EQF
reqguest
wait

.cws3xl

zOF .

/usr/masc/gsd/cbi/stproc > /dev/aull <K EQOF
cancel :
all

cwsédxl

A\

23

ECF
/usr/mnsc/gsd/obj/storoc
request

wait

CWsé4xl

EQOF
/usr/mnsc/gsd/obj/stproc

/usr/mnsc/gsd/obj/stproc
cancel

all

cws5xl

EOF
s/usr/mnsc/gsd/obj/stproc
request

wait

cwsSxl

ECF ‘
/usr/mnsc/gsd/obj/stproc
cancel

all

cwstxl

ECF
/usr/mnsc/gsc/obj/sboroc
request

walt

cwsbxl

ECFE
/usr/mnsc/gsd/cbj/stpre
cancel

all

cws7xl

ECF
/usr/nnsc/gsa/ooj/storoc
request

wait

cws7x1

EOF

/usz /mnsc/gsc/obj/s;o*oc
cancel

ail

cws8xzl

EOF
/usr/mnsc/gsd/obj/stproc
request

wait

cws8xl

5,452,415

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

J/dev/null

/dev/null

<<

<<

<«

<<

<<

<<

<<

<<

<<

<<

EQF

ECF

ECF

EQF

4]
(@}
¥y

ECF

53]
Q
o]

24

25

BOF
/usr/mnsc/gsd/obj/storec
cancel

all

Cwslx2

EQF
/usr/mnsc/gsd/obj/stproc
request

wait

cwslx2

EOF .
/Jusr/mnsc/gsd/obj/stproc
cancel

all

CwWsS2%2

EOF
/usr/mnsc/gsd/obj/stproc
request
wait
cws2x2 .

»
EOF
/Jusr/mnsc/gsd/obj/storoc
cancel
all
cws3x2

EOF
/usr/mnsc/gsd,/obj/stproc
request

wait

cws3x2

EOF
/usr/mnsc/gsd/obj/stproc
cancel .

all

cwsdx2 5.

EOF
/usr/masc/gsd/cbli/storec
regquest

wait

cwséx2

EOF
/usr/mnsc/gsd/obj/stproc
/usr/mnsc/gsd/obj/stproc
cancel

all

cws5x2

tny
O
m

5,452,415

/dev/aull <K

/dev/aull <<

/dev/null <K

/dev/null <<

/Gev/nuil <<

/dev/null <<

J/dev/null {(

/dev/null <X

/éev/null <K
/dev/null <<

EOF

EQF

EOF

ECF

ECF

EQF
EQF

26

5,452,415
27 28

/usr/mnsc/gsd/bbj/stnroc > /dev/nuil << EOF
request

walt

cwsSx2

EOF

susr/mnsc/gsd/obj/stproc > /dev/null << EOF
cancel - -

all

CcWs6x2

ECF

/usr/mnsc/gsd/obj/stproc > /dev/null << EQF
reguest 4
wait

- CWS6X2

EQOF ¢
/usr/mnsc/gsd/obj/gtproc > /dev/null << EQOF
cancel

all

cwsT7x2

EOF

/usr/mnsc/gsd/obj/stproc > /dev/null <<
reguest

walt

cwWsTx2

53]
(@]
851

jale)

/usr/mnsc/gsd/obj/stproc > /dev/null << EOF
cancel

ail

cws8x?2

EQF *
»/usr/mnsc/gsd/obj/sgoroc > /dev/null << EQF
request '

walt

cwWs8x2
ECF

Mcdule Name is cenfig 310 _QUADS

rdx=$1
bays=$2 .
flle2-$3 o - .
while ;. f.-,m .
do . ;
echo -n-!ls_thls SX system a mix-of DSI ‘and LNU7HLU carqs (Y N)y 2 . ¢
-echo "QUESTION: -Is this -SX sysg_m a mix...(Y,N) ? : "->> §Ffijel-
* read choice == .. : -
echo "RESPONSE: $choice™ >> $file2
case Schoice in
Y | y| yes | ¥ES)
if [Sbays -eg 0]
then
filel="/usx/ava/screens/r&x310/cnig/.QUADS {rix}jx3"

5,452,415
29 _ | 30

/usr/ava/install/config_io sne_f 3 1 $filel s$file2
elif [$bays —eq 1])

then
filel="/usr/ava/screens/rdx310/cafg/.QUADS {rdx}x3"
/usr/ava/ins;a’l/cou ig io shelf 3 1 $filel $file2

/usr/ava/instal /conLLg io shﬂlf 3 2 $filel sfile2
elif [$bays =-eq 2]

then
filel="/usr/ava/scres ns/rax310/cnrg/ QUADS {rdx}x3"
/usr/ava/install/cenfig_io _shelf 3 1 $filel $filel

/usr/ava/install/confiq io sbelf

/usr/ava/install /config _io_ shelf

/usr/ava/install/config_io_shelf
elif [Sbays -eg ¢] .

$filel $file2
$filel Sfile2
$filel $file2

Wwww
W N

then -
for 1 in 2 7
do)
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}xs{il"
while : ¢
do _
echo —n "Is Bay $1 a2 mix of DSI and IMU/EMU cards (Y,N) 2 : *
echo "QUESTION: Is Bay S$i a mix...(Y,N) ? : " >> $file2
read choice - '
echo "RESPONSE: Schcice! >> $file2
case $choice in
Y | v | yes | ¥=Es :
/usr/ava/install /config _io shel‘ $1 1 sfilel §file2
/usr/ava/install/config io shelf $i 2 Sfijel $file2-
/usr/ava/Lns‘a;l/conflg 1o_snelf $i 3 S$fi.el $£ilel
/usr/ava/install /config _io shelf $i 4 $filel $file2
break
N | n| ool xNO)
while :
do
echo -n "Enter the Bay Resource Type (ds3,dsl) : "
echo "QUESTION:Enter the Bay Resource Type (&s3,dsl) : " >>$:
read choice
echo "RESPONSE: Schoice”" >> $file2
if ["Schoice" = "ds3"]
- then
type="3 3 3 3%
break
elif ["S$choice" = "dsl"]
then
type="1 1 1 1"
) break
else
echo "Invalid ch01ce—Please try again”
echo "PROMPT: Invalld choice-Please try again" >> S$file2
continue
fi
done .
echo $type > Sfilel
echo Stype >> $filel
echo Stype >> $filel
echo $type >> $filel
break
*) s) ‘
echo "Invalid choice-Please try again®
echo "PROMPT: Invalid choice-Please try again" >> $file2
continue
esac
done
done
elif [Sbhays -eg 6]
then

for iin27zxvy

5,452,415

£-

31 32
do
filel="/usr/ava/screens/rdx310/cnig/.QUADS {rdx}xS{i}"
while : :)
co
echo -n "Is Bay $i a2 mix of DSI and ILMU/EMU cards (Y,N) 2 : *
echo "QUESTION: Is Bay $i a mix...(Y,N) ? : " >> $file2
read choice :
echo "RESPONSE: $choice" >> $file2
case $Schoice in ,
Y |y | yes | YES)
/usr/ava/install/config io shelf $i 1 $filel $file2
/usr/ava/install/config io_shelf $i 2 $filel Sfile2
/usr/ava/install/config io _shelf $i 3 $filel Sfile2
/usr/ava/install/config io shelf $i 4 $filel $file2
break
Nl ol ol NO)
while :
do ‘
echo —n "Enter the Bay Resource Type (ds3,dsl) : "
echo "QUESTICHN:Enter the Bay Resource Type (ds3,dsl) : " >x
read choice -
echo "RESPONSE: $choice" >> S$file2
if ["$choice" = "ds3"]
then
type="3 3 3 3" .
break
elif ["$choice" = "dsl"]
then
type="1 1 1 1"
break
else L
echo "Invalid®choice-~Please try again®
echo "PRCMPT: Invalid cholce-Please try again™ >> $iile2
. continue
fi
done
echo $type > $filel o
echo Stype >> $filel
echo S$type >> $filel
echo $type >> $filel .
break : :
*) i -
echo "Invalid choice-Please try again®-
echo "PROMPT: Invalid choice-Please try again" >> $file2
continue .
- esac
done
done
else .
for iin2 7=xyabcd
do
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}x${i}"
while :
do -
echg -n "Is Bay $1 a mix of DSI and IMU/EHMU cards (Y,N) 2 : "
echo "QUESTION: Is Bay $i a mix...(Y,N) 2 : " >> $file2

read choice

echo "RESPCNSE: $choice” >> $file2

case $choice in

Y | y | yes | ¥ES) .
/usr/ava/install /config io_shelf $i 1 $filel $file2
/usr/ava/install/config io shelf $i 2 Sfilel $file2
/usr/ava/@nstal}/;onf;g_io_shelf $1 3 $filel S$file2
/usr/ava/install /config io_shelf $i 4 $filel $file2
break -

N |'n| no | NO)

5,452,415

33 34
while : ¢
do
echo —n "Enter the Bay Resource Type (ds3,dsl) : "
~ echo "QUESTION:Enter the Bay Resource Type (ds3,dsl) : " >>§f

read choice
echio "RESPONSZ: Schoice" 2> $flle“
if ["Schoice" = "ds3"]
- then
type="3 3 3 3"
break . .
ejlz { nsc.\o.,cau - ndslu]
‘then
- type="1111
breax
else
echo "Invalid choice-Please try again'
echo "PROMPT: Invalid ch01ce—P1ease try again" >> $iiie2
continue
£i
done
echo Stype > §file
echo $type >> Sfilel
echo $type >> S$filel
echo $type >> $file]

break —
*) N
echo "Invalid choice-Please try again"
echo "PROMPT: InvaliB chdicePlease try dgain" >> $file2
continue
esac
done
done
- fi
break)
N|n|no!l NO)
while :
do -

echo -n "Enter the System Resource Type (ds3,dsl) : °

echo "QUESTION:Enter the System Resource Type (ds3,dsl) : " >> §file2

read choice
echo "RESPONSE: $choLce" >> $file2
if ("$ch01ce“ = "ds3"]
then
type-"3 3 33"
break
elif ["Sthoice” = "dsl"] -
then
type="11 1 1"
break
else
echo "Invalid choice—Please try again®
echo "PROMPT: Invalid choice-Please try again” >> $£i

-]
b
139

continue
fi
done
if [Sbays -eq 0]
‘then

filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}x3"

echo Stype > $filel
elif [Sbays —eg 1]
then

fllel—"/usr/aVa/scrnens/rcx310/cn*g/ QUADS {rdx}x3"

echo Stype > $filel

echo $type >> $filel

5,452,415
35 : 36
elif [Sbays —eq 2]
then 7
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}x3"
echo Stype > $filel
echio $type >> $iilel
echo $type >> $filel
echo S$type >> $filel
elif [Sbays -eq 4]
then .
for 1 in 2 7
do .
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}xS$(i}"
echo $type > $filel
echo $type >> $filel
echo Stype >> S$filel
echo $type >> $filel
done
elif [Sbays —eq 6]
then
for 1in 2 7 x5y
do]
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}xs{i}"
ech&'$ﬂﬁx?>'$filéi“ T o ST '
echo S$type >> S$filel
echo $type >> $filel
echo $type >> $filel
done
else
for i in27 xyabcd
ao “.
filel="/usr/ava/screens/rdx310/cnfg/.QUADS {rdx}xS{i}"
echo $type > $filel
echo $type >> $filel
echo $type >> $filel
echo Stype >> $filel
done .
fi
break
*) rr
echo "Invalid choice—-Please try again®
echo "PROMPT: Invalid choice-Please try again® >> $file2
continue ’
esac
done

Module Name isvconfig_Bl_QUADs

rdx=§1 o~ ¢ v
bays=$2 :
file2=$3

while :

do

echo -n "Is this SX system a mix of DSI and IMU/HMU cards (Y,N) ? :

echo "QUESTION: Is this SX system a mix...(Y,N) 2 : " >> sfile2
read choice
echo "RESPONSE: Schoice" >> $file2
case $choice in
Y |y | yes | ¥ES)
if [$bays —eg 0] -
then
filel="/usr/ava/screens/rdx31/cnfg/.QUADS {rdx}x3"
/usr/ava/install/config_lo_shelf 3 1 $filel $filel
elif [Shays —eq 1]
then
filel="/usr/ava/screens/rdx31/cnfg/.QUADS {rdx}x3"

"

5,452,415
37 38

/usr/ava/install /config_io shelf 3 1 $filel s$file2
/usr/ava/install /config_io_shelf 3 2 $filel $file2
elif [Sbays -eq 2]

then

flTe1—"/us*/ava/screens/raxBl/cnfg/ QUADS[rdx}xB"

/usr/ava/1nstal1/conf1g io shelf 3 1 sfilel $file2
/usr/ava/install/config_io_shelf 3 2 $filel $file2
/usr/ava/install/config_jo shelf 3 3 Sfilel $file2
/usr/ava/install/config io _shelf 3 4 $filel $file2

elif [S$bays —-eq 4]

then

for i in 3

do

4

filel="/usr/ava/screens/rdx31/cnig/. QUADS{rcx}xS{l}"
while :

do

done

done

elif [$bays

then

echo
echo
read
echo
case

v

Py
y43
/u
/u
/u

-n "Is Bay $i & mix of DSI and IMU/HMU cards (Y,N) ? :
YQUESTICN: Is Bay $i a mix...{(Y,N) ? : " >> $file2
choice .
"RESPONSE: $choice” »> $file2
Schoice in

| yes | -¥Es) ,
sr/ava/install /config io_shelf $i 1 $filel $file2
sr/ava/install /config jo _shelf $i 2 S$filel $file2
sr/ava/install /config io shelf $i 3 $filel $file2
sr/ava/install/config io shelf $i 4 $filel $file2

break

N |'n | no! NO
while :

*

do

do

echo -n "Enter the Bay Resource Type (ds3,dsl) : "
echo "QUESTION: Enter the Bay Resource Type (ds3,dsl)
read choice
echo "RESPONSE: S$choice” >> $file2
if ["Schoice" = "ds3"]
then
type="3 3 3 3"
break
elif ["$Schoice" = "dsl"]
then
type="1 11 i
break
else
echo "Invalid choice-Please try again”

"

DS

echo "PROMPT: Invalid c001ce—Please try again" >> $file2

continue
fi :
ne -

echo Stype > $filel

ec

ho Stype >> $filel -

echo Stype >> $".le1
echo Stype >> $filel
break

i

echo "Invalid choice-Please try again™

echo "PRCOMPT: Invalid choice-Please try again" >>

continue
esac

7eq 6]

for i in 3 4 5 6

do

filel="/usr/ava/screens/rdx31/cnfg/.QUADS [rdx}x$(i}"
while :

do

5,452,415

39 40
echo -n "Is Bay $i a mix of DSI and IMU/EMU cards (VY,N) 2 : "
echo "QUESTION: Is Bay $iamix...(Y,N) 2 : " >> $file2
read cheoice
echo "RESPONSE: $choice" >> $file2 e
case S$Schoice in .

Y| v | ves | YES)
/usr/ava/install /config ioc shelf, $i 1 $filel sfile2
/usr/ava/install/config io shelf $1 2 $filel $file2
/usr/ava/install /config io shelf $i 3 $filel $file2
/usr/ava/install/config jio shelf $i 4 $filel $£file2
brezk -
N | n | nol NO)
while :
do i)
echo —n "Enter the Bay Resource Type (ds3,dsl) : *
echo "QUESTION: Enter the Bay Resource Type (ds3,dsl) : " »sf
read choice -
echo "RESPONSZ: $choice" >> $file2
if ["S$choice" = "ds3"]
then ’
type="3 3 3 3"
break
elif ["Schoice" = "dsl".] ..
then '
type="1 11 1"
break -
else
echo "Invalid choice-~Please try again”
echo "PRCMPT: ,Invalid choice-Please try again" >> $iile2
ccntinue
£i
done
echo Stype > S$filel
echo $type >> S$filel
echo Stype >> $filel
echo Stype >> $filel
break
*) 7 ¢] .
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice—-Please try again" >> §$file2
continue
esac
done N
done
else

for i in 3 4 5 6 10 11°12 13
do

filel="/usr/ava/screens/rdx31/cnfg/.QUADS {rdx}xs{1i}"
while :

do

echo -n "Is Bay $i a mix of DSI and IMU/HMU cards (¥Y,N) ? :

echo "QUESTION: Is Bav $1 a mix...(¥Y,N) ? : " >> $fileld

read ‘choice -

echo "RESPONSE: Schoice" >> $fileZ

case S$choice in

v | v | yes | ¥ES)
/usr/ava/install/config io _shelf $i 1 $filel $file2
/usr/ava/install /config_io_shelf $i 2 §$filel $Zile2
/usr/ava/install /config_io shelf $i 3 S$filel Sfile2
/usr/ava/install/config_io_shelf $i ¢ $filel Sfilel
break .

N|nl no!l NO)
while :
céo

"

echo -n "Enter the Bay Resourte Type (ds3,dsl) :

"

5,452,415
41 42

echo "QUESTION: Enter the Bay Resource Type (ds3,dsl) : " » §f
read choice
echo "RESPONSE: Schoice" >> $file2
if ["$choice"” = "ds3" }
then '
type="3 3 3 3"
break
elif { "S$choice" = "dsl"]
then _
type="l l l l" .
break
else-
echo "Invalid choice-Please try again"
-echo "PRCMPT: Invalid choice—-Please try again® »> $£ile2

-

continue
fi
done
echo Stype > $filel

echo Stype >> $iilel
echo $type >> Sfilel
echo Stype >> $filel

break
L33
*))
echo "Invalid choice~Please try again”
&cho "PROMPT: Invalid choice-Please try agair” >> $£ile2
continue
~esac
done
done
£i -
break :
N|nl no!l NOY
while :
do
echo —n "Enter the System Resource Type (ds3,dsl) : "
echo "QUESTION: Enter the System Resource Type (ds3,dsi) : " >> §

read choice .
echo "RESPONSE: Schoice' >> $filel
if ["Schoice" = "ds3"]
then
type="3 3 3 3"
break
elif ["Schoice" = "dsl”] .
then
ftype="1 11 1"
break
else
echo "Invalid choice-Please try again”
echo "PROMPT: Invzlid choice-Please try again” >> $filel

continue
£i .
done ~
if [Sbays —eg 0]

then
filel="/usr/ava/screens/rdx31/cnfg/. QUADS{rdx}A3"
echo Stype > $filel

elif [Sbays -eq 1]

then
Flle1—P/usr/ava/screﬁns/rGABl/CﬂLg/ QUADs[rdA}xB"

echo Stype > $filel
echo Stype >> §$filel

elif [Sbays —eq 2 1]

.then N
filel="/usr/ava/screens/rdx31/cnfg/.QUADS {rdx};x3"
echo Stype > S$filel
echo Stype >> $filel

5,452,415
43 4

echo Stype >> S$filel
echo $type >> $filel
elif [Sbays —-eq 4]
then
for i in 3 4
. do)
filel="/usr/ava/screens/rdx31/cnfqg/.QUADS {rdx}xS{i}"
echo S$type > $filel
echo $type >> $filel
echo Stype >> $filel
echo $type >> $filel
dene .
elif { Sbays -eqg 6] >
then
for 1 in-34 56 A
do : .
filel="/usr/ava/screens/rdx31/cnfqg/.QUADS {rdx}xS{i}"
echo S$type > $filel :
echo $type >> S$filel
echo Stype »> $filel
echo S$type »> $filel
done
else
for 1 in 3 4 5 6 10 11 12 13
do -
filel="/usr/ava/screens/rdx31/cnfg/.QUADS [rdx}x${i}"
echo $type > $filel
echo $type >> $filel
echo Stype »> $filel
echo Stype >> Sfilel
cdone
fi
break
*) r s
echo "Invalid choice-Please try again”
echo "PROMPT; Invalid cholice-Please try again® >> $file2
continue
esac
done

Module Name is coﬁfig_FEPS

rdxnum=$1 -
feps= _expr "S$rdxnum” / 4_
rmdr= expr "$rdxnum" % 4
if ["$rmdr" -ne 0]

then - -
“feps= expr "$feps" + 1
fi . - . L -
filel= cat fusr/ava/install/.quest file

cp /usr/com/sys/loadlist /usr/com/sys/prehAVA -
cp /usr/com/sys/parm /usr/com/sys/preAVA

Ccp /usr/com/sys/mnsc_load /usr/com/sys/preiVA

cp /usr/ml2/sys/loadlist /usr/ml2/sys/preiAVA

cp /usr/mla/sys/parm /Usr/mla/sys/preivVa

cp /acd/hosts.boot /acd/preAVa

rm ~f /usr/mla/stdylb/cfile/*

cp /usr/ava/usr.mla.stdylb.cfile/c-mnsc fusr/mla/stdylb/cfile
cp fusr/ava/usr.mla.stdylb.cfile/codex /usr/mla/stdylb/cfile
cp /usr/avas/usr.mla.sys/parm /usr/mla/sys/parm

if { $rdxnum —le 19]
then
cp /usr/ava/acd/hcsts.bcotld /acd/hosts.boot
cp /usr/ava/usr.ccm.sys/parm/parm.l9 /usr/com/sys/parm

5,452,415
45 46

cp /usr/ava/usr.com.sys/lcadlist/loadlist.19.${feps} /usr/com/sys/loadlist
cp /usr/ava/usr.com.sys/mnsc_load/mnsc_load.l19.${feps} /usr/ccm/sys/mnsc_load
else =
cp /usr/ava/acd/hosts.boot38 /acd/hosts.boot
cp /usr/ava/usr.com.sys/parm/parm.39 /usr/com/sys/parm
' ¢p /usr/ava/usr.com.sys/loadlist/loadlist.39.${feps} /usr/cem/sys/loadlist
o cp /usr/ava/usr.com.sys/mnsc_load/mnsc_load.39.${{feps} /usr/éom/sys/mnsc_lcad

/usr/ava/usr.ml2.sys/make_loadlist Srdxnum
/usr/ava/install/chrod 777 /usr/com/sys/parm
while read node type bays growth name -
do
if { Stype -eq 3]
then
if [Srdxzaum -le 19]
then '
copydir=/usxr/ava/usr.mla.stdylb. crlle/rc133/19
else
pya1r=/usr/ava/nsr.mla.s;cjln.czlle/rcx33/39
fi ' :
fi
if [Stype —eg 1]
then
if [Srdxnum -le 19]
then .
copydir=/usr/ava/usr.mia.stdylb. cflle/rax31/19
else
ccpyalr=/usr/ava/us-.nla.s;a;lo.c;lle/rc&Bl/aQ
fi
fi
if [Stype —eqg 0]
then
if [Sréxnum -l= 19]

@

then
copyd1*=/usr/ava/usr mla.stdylb.cfile/rdx310,/19
else
] copydir=/ustf/avd/usr.mla.stdylb.cfile/rdx310/39
£i =
/usr/ava/install/copy_cfile Scopydir $node
done < /usr/ava/screens/rdx_cnfg.parms
/usr/ava/lnstal /edlt cfile

Module Name is config io_shelf

bay=51
shelf=$2
filel=§3
file2=54
echo "Configure BAY ${bay} SHELF ${shelf} QuaDp 1 : "
‘echo "Configure BAY $(bay} SHELF S{shelf} QUAD 1 : " >> s$file2
while :
do -
echo -n "Enter QUAD 1 Type (ds3,dsl,empty) : "
echo "QUESTION: Enter QUAD 1 Type (ds3,dsl,empty) : " >> Sfile2

read choice
echo "RESPONSE: Schoice” >> $file2

if { "Schoice" = "ds3"]
then

type= n 3 n

break
elif ["Schoice" = "dsl"]
then

tYPe: " l \ i

break

5,452,415

47 48
elif ["Schoice™ = "empty" |
then -
type= L] n?
break
else

echo "Invalid choice—-Please try again"
echo "PROMPT: Invalid choicez-Please try again" >> $file2

ccntinue
fi
done
echo "GConfiqure BAY S{bay} SHELF ${shelf} QUAD 2 : "
echo "Configure BAY ${bay} SHELF ${shelf} QUAD 2 : " >> $file2
while :
do

echo —n "Enter QUAD 2 Type (ds3,dsl,empty) :
echo "QUESTIO: Enter QUAD 2 Type (ds3,dsl,empty) : " >> $filel

‘read choice

. echc "RESPONSE: Schoice" >> $file2

if ["Schoice" = "ds3"]
then *
type=Stype"3 "
break :
1if ["Schoice" = "dsi"]
hen :
“type=Stype"l "
break
elif ["Schoice" = "empty"]
then
type=Stype"0 " _
break e
else
echo "Invalid choice-Please try again"
echo "PROMPT: Invalld choice-Please try again” >> $file2
continue
fi

cr (D

done

echo "Configure BAY $(bay} SHELF ${shelf} QUAD 3 : "

e;ﬁ; "Configure BAY ${bay} SHELF ${shelf} QUAD 3 : >> $file?
while :

do

echo —n "Enter QUAD 3 Type (ds3,dsl,empty) : "
echo "QUESTION: Enter QUAD 3 Type (ds3,dsl,empty) : " >> $file2
read choice
echo "RESPONSE: S$choice" >> $file2
if { ?Schoice";= "ds3"]
then
break - - B
elif ["Schoice” = "dsl"])
then
type=$type"l "
break
elif ["S$Schoice" = “empty"]
then
type=5$type""0 "
break
else
echo "Invalid cholce-Please try again"
echo "PROMPT: *Invalid choice-Please try again" >> Sfilel

continue + -
fi
done
echo "Configure BAY ${bay} SHELIr ${shelf} QUAD 4 : "
echo "Configure BAY S{bay} SHELF ${shelf} QUAD 4 : " >> S$file2

while :

5,452,415
49 50

do .
echo -n "Enter QUAD 4 Type (ds3,dsl,empty) : "
echo "QUESTION: Enter QUAD 4 Type (ds3,dsl,empty) : " 3> §
read choice
echo "RESPONSE: $choice" >> $file2
if [-"Schoice" = "ds3"]
then
type=$type”3 "
break
elif ["Schoice" = "dsl"]
then
""De Stypeul "
‘break
elif [“"Schoice" = "empty"]
then 4
x.,.pe_St]peuo "
break
eise
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice-Please try again® >> $filel2
continue : -
fi
done
echo Stype »>> $filel

rh
=
'_.l
\)

Module Name is config_lprs

filel="cat 7usr/ava/lnstall/.quest_file~ :
echo "/dev/tty53" > /usr/custcmer/sys/prt_cnfg
echo "/dev/tty54" >> /usr/custome*/sys/prt cnfg
umask 0
rm -f /dev/sys_printer
ln ~s /dev/tty54 /dev/sys_printer
umask 22
while :
do
cd fusr/ava/usr.com.sys/loadlist
echo -n "Is there a second system line printer (Y/N)? "
echo "QUESTION: Is there a second system line printer (Y/N)? " >> S$fi
read choice
echo "RESPONSE: Schoice " >> $filel
case Schoice in
Y | v | yes | ¥ES)
cat load_l1pr.2 >> /usr/ccm/sys/loadlist
cp /usr/ava/usr com. sys/ddf. 2 /usr/com/sys/ddf
echo "/dev/tty::" >> Jusr/customer/sys/prt_cnig
break .

N] n | no | NO)
Cp /usr/ava/usr.ccm.sys/ééf.l fusr/com/sys/ddaf
break

*)

se try again”

echo "Invalid choice- P 2
id choice-Please try agailn" >> Sfilel

echo "PROMPT: Inval
continue

=
oY
ii

1
c

esac
cone

Module Name is config ttys

filel= cat fusr/ava/install/.quest file~
Ccp /usr/ava/etc/ttys /etc

while :

do

(=

’.J

5,452,415
31 52

echo -n "Do you wish to reconfigure a TTY (Y/N)? "
echo "QUESTION: Do you wish to recopniigure a TTY?" >> $filel
| read choice
echo "RESPONSE: Schoice" >> $filel
case $choice in
N | n| no !l NO)
break -
v |y 1 ves | vEs)
while :
do

echo —n "Enter TTY Number (0-39)? "

echo "QUESTION: Enter TTY Number (0-39)?" >> Sfilel
read choice

echo "RESPONSE: ‘Schoice" >> Sfilel

if [$choice -ge 0 -a Schoice -le 39] -
then ,

tynum=S$choice

line num=_expr $ttynum + 2

while :

do

echo —n "Do you wish to change the Baud Rate (Y/N)? "
echo "QUESTION: Do you wish to change the Baud Rate?" >> S$fil
read choice
echo "RESPONSE: Schoice™ >> Sfilel
case S$choice in
¥] n | nol NO)
break

v'| v | yes | wms)

echo -n "Enter Baud Ratﬂ 2 "
echo "QUESTION: Enter Bauc Rate : " >> S$filel
read choice .
echo_"RESPONSE: $choice” >> sfilel

was= pwd

cd /tmp

cp /etc/ttys .
echo "${line num}s/9600/Schoice/" > edcmd
sed ~f edcemd ttys > ttys.new

cp ttys.new Jetc/ttys '

cd Swas

break

?

N tr
*)
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice~Please try agaln" >> $filel
continue
esac

done
while :
do

read
echo
case

N

echo —n "Is the device a Line Printer (Y/N)> "
echo "QUESTION: Is the device a Line Printer?" >> $filel

choice’
"RESPONSE: S$Schoice"” >> $filel
Schoice in

"8 | no | NO)

break

v

vl yes | YES)

was= pwd

cd
cp

/tmp .
/ete/ttys .

echo "${line_num}s/on modem secure/off/"* > edcmd

a1

5,452,415
53 54

sed -f edcmd ttys > ttys.new
cp ttys.new /etc/ttys
cd $was
break
ii
*) B
echo "Invalid cheice-Please try again”
echo "PROMPT: Invalid choice-Please try again® >> $filel
continue
esac
done
while : v -
do
eche -n "Does the device provide Carrisr Detect (Y/N)? "
echo "QUESTION: Does the device provide Carrier Detect?" >> $filel
read choice
echo "RESPONSE: S$Schoice" >> $filel
case S$Schoice in
N | n_| no | NO)
was= pwd
cd /tmp
Cp /etc/ttys
"echo "${line num}s/modem/acmodem/™ > edcmd
sed —f edcmd ttys > ttys.new
Ccp ttys.new /etc/tiys
cd Swas
break

11
Y | vy | yes | ¥ES)
bresk
ii
*)) ..
.echo "Iavalid chcice-Please try again”
echo "PRCMPT: Invalid choice-Please t*y again® >> S$filel
continue
esac
done
break
else
echo "Invalid choice-Please try agaln"
echo "PROMPT: Invalid choice-Please try again" .22 $filel
continue '
fi
done

r ¢
*)

echo "Invalid choice-Please try again”

echo "PROMPT: Invalid choice-Please try again” >> $;11e2
continue

esac

dene

Mcdule Name 1s config ws_3

filel="cat /usr/ava/install/.quest file~
m -f /dev/gsd/dcu*

was= pwd
while :
do

cd /usr/ava/usr.com.sys/loadlist
- echo -n -"Install How Many 2100 Workstations (0-8)2? "
echo "QUESTION: Install How Many 2100 Workstations (0-8)? " >> $filel
read choice
echo "RESPONSE: $choice " >> $filel

5,452,415
55 56
if [Schoice -eq 0]
then
echo "0" > susr/ava/install/.ws_number
cat locad_ws.0 >> /usr/ccm/szs/loacllsu
break
elif { S$choice —ge 1 -a $choice -le 8]
then
echo "${choicel" > fusr/ava/install/.ws number
cat load ws.${choice} >> /usr/com/sys/loadlls;
i=1
while ["Sl" ~-le Schoice]
do
touch fusr/gsd/sys/logical/cws${i}xl
touch /usr/gsd/sys/lcgical/cws${i}x2
touch /usr/gsd/sys/lcgical/cws${i}x3
1= expr $i + 1
done
/usr/ava/lnsgall/cqmoc 777 Jusr/gsd/svs/logical/=
break
else
echo "Invalid choice-Please try again"
echo "PROMPT: Invalid choice-Please try agaln" >> $filel
continue
fi
done ' : -
cd Swas.

Module Name is copy-cfile

cd s1 -

if ["s$2" ~le 9]
then

cp officel$2 /usr/mla/stdylb/cfile
else

. cp offices?2 /usr/mla/stdylb/cfile
£i :

Module Name is copy. mla cmds

was= pwd .
for i in “cat fusr/ava/install/.site names.old”
do
rm —f /usr/mla/cmds/Si
done
cd /usr/ava/usr.mla.cmds
cp alarm-summary /usr/mla/cmds
Cp msg—-summary’ /usr/mla/cmds
cp offices fusr/mla/cnds
cp search /usr/mlia/cmds
cp pm—report /usr/mla/cnds
cp time /usr/mla/cmds
cp link-report /usr/mla/cads
j=1 .
while ["Si" -le 9 -a "$3" -le $1]
do
cp_office0$j /usr/mla/cmds
j="expr $j + 1
done
while ["$i" -le 5;]
do
cp OfIlC°$] /usr/rla/cmcs
j= expr $3 + 1
done
cd /usr/mla/cmds
names= cat /usr/ava/install/.rename sites

-

5,452,415

Module Name is copy_query

was= pwd "

cd fusr/ava/usr.gsd.sys.query

rm -f /usxr/gsd/sys/query/*

cp main_menu /usr/gsd/sys/query

cp main_queue /usr/gsd/sys/query

cp moniteor /usr/gsd/sys/query

j=1 o

while ['"$j" -le 9 —a "$i" -le $1]

do
cp monitor 0$j /usr/gsd/sys/query
cp_queue_0$j /usr/gsd/sys/query
j= expr $3 + 1

done

while ["$3" -le $1]

do
cp monitor_$3j /usr/gsd/sys/query
cp_queue $j /usr/gsd/sys/query
j= expr $j + 1

done .

cd /usr/gsd/sys/qu -

names= cat /usr/ava/install/.rename sites

if ["Snames"” -eq 1]

then
j=1
while read site_name
éo
if ["$3" -le 9]
then

/usr/ava/install /edit_query $site_name 0S$]

else

- /usr/ava/install/edit_guery $site name $j

£i_ -
J=expr $3 + 1
done < /usr/ava/install/.site_nzzmes
£i
. cd $was

57
if ["$names" -eq 1]
then
j=1
while read site name
do -
echo $site _name > x79.tmp
tr a-z AzZ < x79.tmp.> X791.tmp
capname= cat x791.tmp
rm x7%.tmp x791.tmp
if ["$3" -le 9] :
then ‘ .
echo "s/CFFICE0S]/Scapname/g" > /tmp/ed100
echo "s/office0$]j/$site name/g" >> /tmp/edl00
sed —-f /tmp/edl00 officelsj > Ssite name :
rm officelS]
else » : |
echo "s/OFFICZS$i/$capname/g" > /tmp/edl00
echo "s/officeS$j/$site name/q" >> /tmp/edl00
sed —f /tmp/edl00 cffice$Sj > $site name
rm officeSj
fi
j="expr $3j + 1
done < Jusr/ava/install/.site nemes
m —-f /tmp/edl00
fi
cd Swas

58

5,452,415
39 60

Module Name is create links

rm -f fusr/bin/utilitids
ln -s /usr/ava/root_utilities/utilities /usr/bln/utllltles

Module Name is delete_sites

if [—f fusf/ava/install/.site names]
then
cd /usr/ava/install
/usr/mnsc/mla/ob]/acproc > temp << ECF

list

RIPUL

ALL, -

N

EOF . .
for 1 in cat .site_names
do

grep "$i" temp >> templ

done

sed ~f edcmdl.hb templ > tmp

while read aa site hour min bb cc dd ee ff gg hh ii jj kk 11 mm

do
/usr/mnsc/mlascbj/acproc > /dev/null << EOF
deactivate
Ssite
ripul

» -

18]
"y

Q
/usr/mnsc/mla/obj/acprec > /dev/null << EOF

remeve

Ssite

ripul

ECF - .
done < tmp . ' -

m temoltnmpl tmp
fi
/Lsr/mnsc/mla/obj/acoroc > /dDV/DhLl << EOF
deactivate
codex
ripul

EOF

/usr/mnsc/mla/obj/acproc > /dev/puLl (< EOF

remove

codex

ripul e

EQF
Module Name is edit_cfile

cd fusr/mla/stdylb/cfile

5,452,415
61 62

names= cat /usr/ava/install/.rename_sites‘
if ["$names" -eq 1]

then
j=1
while read site_name —
do :
if ["si" -le 9]
then
if [—f office0$]]
then
mv officel$] $site name
£i
else
if [-f office$]]
then
mv office$j $site name
fi
fi :
/usr/mnsc/mla/obj/geproc > /dev/null <K EQF -
edit

$site_name

$site_name

EQF -
j="expr $j + 1
done < /usr/ava/lnsuall/ sits_names : -

fi

Module Name is edit_ gquery

fiJel="monitor $2"

file2="queue_ $2"

echo "s/office$2/${1}/g¢" > edemd
cp $filel tmp.file

sed —f edcmd tmp.file > $filel
cp S$file2 tmp.file

sed -f edcmd tmo file > $file2
m edcmd

rm tmp.file

Module Name is expaad_réx

i= cat /usr/ava/questlons/numcer
... filel=" fusr/ava/questions/session. sin -
- echo "$filel” > »/usr/ava/mstall/ guest file
- i="expr $i + 1

. echo{“Sl - /usr/ava/cueshlons/numbe.
echo ™ "y §filel :

. echo “Exnandlng‘SX(s) in the System”" >> $filel
echo ~date~->>-$filel -
echo " " »> $filel
oldrdx=" cat /usr/ava/lnsba 1/.réx _number
rdxstart="expr "Soldrdx" + %
echo " .

The System w1ll automatically retcot during this process.

-

echo "DPROMPT: The System will autcmatically rebcct during this process.” >> $3ilsl

5,452,415

63 : 64
‘echo -n "Do-you wish to proceed (¥Y/N) 2 "
echo "QUESTION: Do you wish to proceed (Y/N) 2 " > §fiiel
read choice
echoc "RESPONSE: Schoice " >> $filel
case Schoice in »

vy | v | yes | vzs)

break;
i
=)
echo "Expand SX drortad..."
echo "PRCOMPT: Exgend SX 2bcorzad..." >> $filsl
exit 1 '
esac
echo " "

echo "The 2100 Workstations cannc: ke d‘SD1ay1pc g&aph_cs Guripg

process. All screens being displieyed on GSD Display Windows will ncw ke

canceled before procesading. .
" ’ -

sJusr/ava/install /cancel all screens

while :
éo : .
echo —-n "Expand to How Many SX¥s ($Srdxstart—39)? "
2cho "QUESTION: Expand to How Many
- rzad choice
echo "RESPONSE: Schoics " >> S§iilel
if [$choice —ge Srdxstart -z Schoice -le 39]
then : :
rdanm~$ch01ce
echo "$rdxnum" > Jusr/ava/install/.rdx_number .
/usr/ava/lnsball/cue*y noces Srdxstart Srdxnum 1 Sfilel
/usr/ava/screens/make_scraens Srdustart —
/usr/ava/screens/u“caue scresns e

ite name

5
'-l
'—l
(b
H
[
hY]
D:
n
‘.I
ct

if ["$3" -ce "Srdxstarz"] *

["Si" -is 24]
then
L /usr/ava/install/hialloc2.jcb $Slte me
else -
/usr/ava/lnstall/hlallocl job $site_name
fi
fi_ -
j= expr $j + 1
done < /usr/ava/install/.site names
/usr/ava/install/copy_mla_cmds $rdxnum
/usr/ava/install/copy_guery S$rdxnum
/usr/ava/lnstall/conflg FEPS Srdxnum
/usr/ava/install/fix_grps
/usr/ava/install/store_screens
/usr/ava/install/activate _all_screens
echo " 1
echo "System is now going to reboot automatically.”
echo " "
sleep 10
/bin/reboot
break
else
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice~Please try again" >> $filel
continue e ~
fi - '
done

7 SXs ($rdxstart—39)? " »> $filsl

5,452,415
65 66

Module Name is finish assemble

/usr/ava/install /gsdass
/usr/ava/install/fix _grps
/usr/ava/install/store_screens
rm —-f /.assemble graphics

Module Name is fix grps

: WS_ number="cat /usr/ava/install/.ws number
if ["$ws_number" -ne 0]

theq

/usr/ava/install/fix_screen grps
fi
cd /usr/mla/cmds
Jusr/ava/install/chmod 777 *
/usr/ava/install/chgrp 192 *
cd fusr/com/sys/rpts
/usr/ava/install/chmod 777 *
/usr/ava/install /chgrp 192 *
cd fusr/rwQl/com/sys/makescreen
find . -exec /usr/ava/lnstall/chgrn 189 {1 \;
/usr/ava/lnsha 1/chgrp 176 dxc2000 acdmain
g_ flag= cat /usr/ava/install/.graphics
if ["sg_flag" -eg 1]
then

/usr/ava/install/chgrp 177 graphics
fi .
/usr/ava/install/chgrp 180 alarms handle monitor
/usr/ava/install/chgrp —f 181 admin patch utility
/usr/ava/install/chgrp 182 super
Jusr/ava/install /chgrp 183 user
/usr/ava/install/chgrp 185 hardware
/usr/ava/install/chgrp 186 display
/usr/ava/insball/chgrp 187 network
/usr/ava/install/chgrp 188 report

r_flag= cat /usr/ava/*qs_all/.*eno*ts
lF ["S$Sr_flag" ~eq 1]
then

/usryava/install/chgrp 188 history-report
fi
/usr/ava/install/chmed 4755 /bin/reboot /bin/halt
/usr/ava/install/chmod 666 /usr/com/sys/ddaf
/usr/ava/install/chgrp 176 /usr/gsd/sys/query/m&in menu
susr/ava/install/chgrp 180 /usr/gsd/sys/query/monitor
/usr/ava/install /chgrp 180 /usx/gsd/sys/query/main_gqueue
ls /usr/gsd/sys/query > files.tmp

eg*ep "_01% files.tmp > rfiles.tmp
for i in “cat rfilesitmp
do’

/usr/ava/install/chgrp 131 /usr/gsdéd/sys/query/$i
done

egrep "_02" files.tmp > rfiles. Tmp
for i in cat rfiles.tmp
do

/usr/a"a/lnsual /chgrp 132 /usr/gsd/sys/query/Si
done
egrep " _03" files.tmp > rfiles.tmp
for i in cat rfiles.tmp
do)

/usr/ava/install/chgrp 133 /usrz/gsd/sys/query/$i
done '
egrep "_0%4" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do _

/usr/ava/install/chgrp 134 /usz/gsd/sys/query/$i

5,452,415
67 68

done
egrep "_05" fl;es tmp > rfiles.tmp
for i in “cat rfiles.tmp
co
/usr/ava/install/chgrp 135 /usr/gsd/sys/query/Si
done
egrep "_06" files.tmp > rfiles.tmp
for i in “cat rfiles. tmp
do
/usr/ava/lnstall/chgrp 136 /usr/gsd/sys/query/Si
done
egrep "_07" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do .
/usr/ava/install/chgrp 137 susr/gsd/sys/query/si
done
egrep "_08" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do
/usr/ava/install/chgrp 138 /usr/gsd/sys/query/S$i
done
egrep "_09" files.tmp > r-11e .tmp
for i in “cat rfikes.tmp -
do
/usr/ava/install/chgrp 139 /usr/gsd/sys/query/Si
done
egrep "_10" files.tmp > rfiles.tmp
for i in cat rfiles.imp
do
/usr/ava/install/chgrp 140 /usr/gsd/sys/cuery/Si
done
egrep "_11" files.tmp > rfiles.tmp
for i in cat rfiles. tmp
do T
/usr/ava/install/chgrp 141 /usr/gsd/sys/query/Si
done
egrep "_12" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do
/usr/ava/install/chgrp 142 /usr/gsd/sys/query/$i
done
egrep "_13" cllPS tmp > rfiles.tmp
for i in cat rfiled.tmp
co : '
/usr/ava/install/chgrp 143 /usr/gsd/sys/que ry/S1
done
egrep "_14" files.tmp.> rfiles.tmp
for i in cat rfiles.tmp
do
/ust/ava/install/chgrp 144 /usr/gsd/sys/query/Si
done

egrep "_13" files.tmp > rfiles.tmp —y
for i in cat rfiles. tmo
do

/usr/avae/install/chgrp 145 /usr/gsd/sys/query/$i
done
egrep "_16" files.tmp > rfiles.tmp
for i1 in cat rfiles.tmp
do
/usr/ava/install /chgrp 146 /usr/gsd/sys/query/Si
done ’
egrep "_17" files.tmp > rfiles.tmp
for i in cat rflles tmp
do .
Jusr/ava/install/chgrp 147 /usr/gsd/sys/query/s$i

5,452,415
69 ‘ 70

done
egrep "_18" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do

" fusr/ava/install/chgrp 148 /usr/gsd/sys/query/Si
done
egrep "_19" files.tmp > rfiles.tmp
for i in cat rfiles.tmp
do

/usr/ava/install/chgrp 145 /usr/gsd/sys/query/Si ’
done
egrep "_20" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do

/usr/ava/install/chgrp 150 /usr/gsd/sys/query/S$i
done
egrep "_21" files. tmp > riiles.t=p
for i in “cat rfilas.tmp -
do

Jusr/ava/install/chgrp 151 /usr/gsd/sys/query/S$i
done
egrep "_22" files.tmp > rfiles.tmp
for i in cat rfiles.tmp
do

Jusr/ava/install/chgrp 152 /usz/gsd/sys/query/Si
done
egrep "_23" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp
do

/usr/ava/install/chgrp 153 /usr/gsd/sys/query/$i
done
egrep " _24" files.tmp > rfiles.tmp
for i in cat rfiles.tmp
do

/usr/ava/install /chgrp 154 Jusz/gsd/sys/query/$i
done '

egrep "_25" files.tmp > rfiles.tmp
for i in “cat rrlles tmp
do

/usr/ava/lnsuall/cn rp 155 Jusz/gsd/sys/query/$i’
done
egrep "_26" files.tmp > rfiles.tmp
for i in “cat rfiles.tmp ‘
do ,
Jusr/ava/install/chgrp 156 /usr/gsd/sys/query/S$i
done

egrep "_27" files.tmp > rfiles.tmp ——ny
for i in “cat rfiles.tmp
do

/usr/ava/install/chgrp 157 Jusr/gsd/sys/query/$i

done
egrep "_28" files.tmp > rilles.tmp
for i in cat rfiles.tmp
do
/usr/ava/install/chgrp 158 /usxz/gsd/sys/query/Si
done
egrep " 29" files.tmp > rfiles.tmp
for i in cat r;lles tmp
do
/usr/ava/install/chgrp 159 /usr/gsd/sys/query/Si
done
egrep "_30" files.tmp > rfiles. tmp
for i in “cat rfiles.tmp
do
/usr/ava/install/chgrp 160 JUST /gsd/svs/qnery/sl

5,452,415
71 72

done
egrep "_31" flles tmp > rfiles.tmp
for i in “cat rfiles.tmp~
do »
/usr/ava/install/chgrp 161 /usr/gsd/sys/query/Si
done
egrep "_32" files.tmp > rfiles. tmp
for i in “cat rfiles.tmp
do
/usr/ava/install/chgrp 162 /usr/gsd/sys/cquery/Si
done
egreo " 33" files.tmp > rfiles.tmp
for i in Tcat rLll_g tmp
do
/usr/ava/install /chgrp 163 /us*/gsd/svs/query/sl
done
egrep "_34" files.tmp > riiles.tmp
for i in “cat rfiles.tmp
do
/usr/ava/install/chgrp 164 /usr/gsd/sys/query/Si
done
egrep "_35" files.tmp > rfiles.tmp
for i in cat rfiles.tmp
do -
/usr/ava/install/chgrp 163 /usr/gsd/sys/query/Si
done
egrep "_36" files.tmp > rfiles.tmp
for i in “cat rfiles. tmp -
do
/usr/ava/lns;aTI/chgrp 166 /usr/gsd/sys/query/si
done
egrep " 37" files.tmp > rfiles.tmp
for i in “cat rfiles:tmp
do ..
: /usxr/ava/install /chgrp 167 /Lsr/vsd/svs/cu ry/Si
ione

/usr/ava/install/chgrp 168 /usr/gsd/sys/query/Ssi
done
egrep "_39" files.tmp > rfiles.tmp
for i in cat rfiles.tmp .
do

/usr/ava/install/chgrp 168 /usr/gsa/sys/cuerj/$1
done
rm *.tmp

Module Name is fix_hw_grps -

cd fusr/rwll/com/sys/hwpages
find . —-type f —exec Jusr/ava/install/chgrp 176
44

T \s
find . -type f -exec /usr/ava/install/chmod 4 1

{
{}\:

Module Name is fix_screen grps

/usr/ava/install /chgrp 130 /usr/gsd/screen/text/alarm.scr
/usr/ava/install /chgrp 130 /usr/gsd/screen/assemble/alarm
sJusr/ava/install/chgrp 130 /usr/gsd/screen/text/alarmh.scr
/usr/ava/install/chgrp 130 Susr/gsd/screen/assemble/alarmh
1s /fusr/ava/install/scr_by site > modlist
grp=130
while read filename
do
for i in “cat /usr/ava/install/scr by site/$filename”
do

5,452,415
73 74

base= basename Si .scr
/usr/ava/instail/chgrp $grp /usr/gsd/screen/text/Sbase.scr
3 /usr/ava/install /chgrp Sgrn /usr/gsd/screen/assemble/Sbase
one
grp= expr $grp + 1
done < modlist
m modlist

Module Name is fix screen scrs

. /usr/ava/install/chgrp 130 /usr/gsd/screen/text/alarm.scr
/usr/ava/install/chgrp 130 /usr/gsd/screen/text/alarmh scr
1ls /usr/ava/install/scr_by site > modlist

grp=130
while read filename
do :
for i in cat /usr/ava/install/scr_by_site/$filename’
do
/usr/ava/install/chgrp $grp /usr/gsd/screen/text/$i
done

grp=_expr Sgrp + 1
done < modlist
rm modlist

Module Name is grow_rdx

i="cat /usr/ava/questions/number
filel="/usr/ava/questions/session.$i"

echo "$filel" > /usr/ava/install/.quest file
i="expr $i + 1~

~echo "$i" > /usr/ava/questiocns/number

echo " " > $filel

echo "Resize One SX in System" >> S$filel
echo date” >> $filel

echo " " » $filel

echo " oo”"

.echo "The 2100 Workstations cannct be displaying gréphics during this
process. All screens being displayed on GSD Display Windows will now be
canceled before proceeding.

1"

/usr/ava/install/cancel_all_screens

rdxmax=_cat /usr/avea/install/.rdx_number
while :
do » ~
echo -n "Change which SX (1-$rdxmax)? "
echo "QUESTION: Change which SX (1-S$Srdamax)? * >> S$filel
read choice
echo "RESPONSE: Schoice " >> $filel
if [Schoice -ge 1 —a Schoice -le $rdwmax]
then
rdAnLn—Schovcc
for i in “cat fusr/ava/install/scr by _site/si te.${rdxnum}
de
. -f_/usr/gsd/screen/text/$i
base— basename $i .scr
rm —-£f /usr/gsd/screen/assemble/s(base}
done
rm —-f /usr/ava/vnstall/scr by _site/site. Serxnun}
/usr/ava/lqsgall/c*ow rdx ¢ til Srdxnum
/usr/ava/install/fix_grps
/usr/ava/install/store screens
Jusr/ava/sinstall /activate_all_screens
ecno " -

5,452,415
75 76

This will complete the Grow Prccess.
1"

break
else
echc "Invalid choice-Please try again®
echo "PROMPT: Invalid choice-Please try again" >> S$filel
continue
fi
done

Module Name is grow_rdx ptl

file2="cat /usr/ava/install/.quest file~
rdx=$1
rm —-f /usr/gsd/sys/sr_definition/SR/MLA/summary
cat /usr/ava/super_registers/network >> /usr/gsd/sys/sr_definition/SR/MLA/summary
mv /usr/ava/screens/rdx_cnfg.parms /tmp/rdx_cnfg.parms :
while read node tjpe bays growth name
do
if ["$node" -eqg "$rdx"]
then
echo $type > /tmp/.rdx_type
eche $growth > /tmp/.rdéx_growth
echo $name > /tmp/.rdx name
fi
done < /tmp/rdx _cnfg.parms

type= cat /tmp/ . rdx type
growth— cat /tmp/.rcx g*owtn
name= cat /tmp/.rdx_name

if [$type ~eq 3]

then
-4 ["Sgrow.t-h" _'ec— llrli]
then
‘eche "Configure Ncde S$name a 1633 SX Right Growth Cross—Ccnnect "
eise
echo "Configure Nccée $name a 1633 SX ILeft Growth Cross—Connect "
fi
echo "PROMPT: Coniigurse Nocde $name : " >> S$file2
while :
do

echo —n "Enter 4§ Ports (64,128,256,512,1024,2048)2 "

echo "QUESTION: Enter # Ports (64,128,256,512,1024,2048)2" >> $file?
read choice

echo "RESPONSE: S$choice" >> $iile2
if [$choice -eqg 64]

then -
while :
do .
echo -n "Enter & Bays (2,3)? "
echo "QUESTION: Enter % Bays (2,3)?2" >> $file2
read chojce
echo "RESPONSE: $cheoice” >> S$file2
if | $choice -eq 2]
then
new bays =0
break
elif [$choice —eg 3]
then
new_bays=1
break
else
echo "Invalid choice-Please try again” .
echo "PROMPT: Invalid choice-Please try again"” >> $file2
continue
fi
done
break

elif [Schoice -eg 128] .

5,452,415

77 78
then
while
do
echo .-n "Enter # Bays (2,3)? "
echo "QUESTION: Enter # Bays (2,3)?" >> $file2
read choice
echo "RESPONSE: $choice" >> $file2
if [Schoice -eq 2]
then
new_bays=2
break
elif [$choice -eg 3]
then -
new_bays=3
break
else
echo "Invalid chcice-Please try again”
echo "PROMPT: Invalid choice-Please try again" >> $file2
continue
£i
done
break
elif [Schoice —eq 256]
then
while :
do ‘
echo —n "Dces this system contain an APU shelf (Y/N)? "
echo "QUESTION: Does this system contain an APU shelf (Y/V)’" >> sfile
rzad choice
echo "RESPONSE: $choice" >> Sfile2
case Schoice in
N T n | no | ¥O)
new_bays=5
break '
Y | y | yes | ¥ES)
new_bays=4 .
break .
*) 7z
echo "Invalid choice-Please try again®
echo "PROMPT: Invalid choice-Please trv again" >> $file2
continue
esac
. done .
brezk
elif [Schoice —eg 512]
then '
while :
do
echo —-n "Does this system contain an APU shelf (Y/N)? "
echo "QUESTIOCN: Does this system contain an APU shelf (Y/N)?" >> sfile
read choice
echo "RESPONSE: $choice"” >> $file2
" case Schoice in .
N T n | no | NO)
new_bays=8
break
Y |y | ves | ¥ES)

new_bays=7
break
ii
*) -
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice-Please try again®
continue
esac

>> $file2

5,452,415

79 80

dene

break .
elif [Schoice -eqg 1024]
then

new_bays=13

break
elif [Schoice -~eg 2048]
then

new_bays=25

break
else

echo "Invalid choice-Please try again®" .
- echo "PROMPT: invalid choice-Please try again” >> S$file2
continue *
. fi » -
done
cd fusr/ava/screens/rdx323
nake_screens $rdx S$new _bays $growth $name
make SR Srdx $new bays Sname

Stvpe —eq 1]
["$grOWth" -eg ny-u]

echo "Configure Ncde $name a 1631 SX Right Growth Cross-Connect "
else
echo "Configure Ncce $name a 1631 SX Left Growth Cross-Connect "
£i .
while :
do - -
echo -n "Enter & Ports (8,16,32,c¢4,128,256)? "
echo "QUESTION: Enter # Ports (8,16,32,64,128,236)?2" >> $filel
read choice '
echo "RESPONSE: Schoice" >> $file2
if [Schoice =g 8] :
then
new_bays=0
break
elif [S$cholce -eq 16]
ther : -
new_pays=1
break
elif [Schoice -eq 32]
then : —
new_bays=2
break
elif [Schoice -eq 64]
then
new_bays=4
break
elif [Schecice -eqg 128]
then .
new_bays=6
break .
elif { Schoice —eg 256 1}
then -
new_bays=13
break -
else
echo "Invalid choice-Please try again”
echo "PROMPT:_Invalid choice-Please try again" >> S$file2
continue

——

fi
done
rm —-f /usr/ava/screens/rdx31l/cnfg/.QUADS {rdx}x*

5,452,415
81 : 82
/usr/ava/install/config 31 QUADS $rdx $new_bays $f1¢e2
cd /usr/ava/screens/rdx31l
make_screens $rdx $new_bays Sgrowth Sname
make_SR $rdx $new_bays Sname
£i
if [$type -eg 0]
then
if [usgrowthn _eq nrn }
then .
echo "Cenfigure Node $name a 1630 SX Right Growth Cross-Connect "
else
echo "Configure Node S$name a 1630 SX Left Growth Cross-Connect "
i
while :
do
echo -n "Enter £. Ports (8,16,32)? *
echo "QUESTION: Enter & Ports (8,16,32)?" >> $file2
read choice
echo "RESPONSE: Schoice" >> $file2
if [$choice —eq 8]
‘then
new_bays=0
break
elif [$choice -eg 16]
then
new_bays=1
break
elif [Schoice —eg 32]
then
new_bays=27
break
elif [Schoice -eg 64]
then
new_bays=4 '
break t
else
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice-Please try again" >> $fiiel
continue ——y
i '
done
rm —-f /usr/ava/screens/rdx310/cnfg/.QUADS (rdx}x*
/usr/ava/install/config_310_QUADS $rdx $new_bays $file2
cd Jusr/ava/screens/rdx310
make_screens $rdx $new_bays Sgrowth S$name
make SR $rdx $new_bays $name
£i -
cd fusr/ava/screens
while read node type bays growth name

éo
if‘[Rsnode" __eq Ilsrdx"]
then
echo "$node $type $new_bays $growth $name" >> rdx cnfg.parms
else
if ["$node" -ge 1 -a "$node" ~le 9]
then
site_name="SS0${node}"
else
site_name="SS${nodel}"
fi
£ [Stype —eq 3]
then
if [Sbays -eq 0]
then

Jjusr/ava/super_. ragls; rs/33/make_ 64 Ssite name $name $ncde

fi

fi

5,452,415
83 84

elif [Sbays —eg 1]
then

/usr/ava/super_registers/33/make_64.3 $site_name Sname $node
elif [Sbays —eq 2] -
then , ~

/usr/ava/super_registers/33/makXe 128 $site_name $name $node
elif [Sbays —eg 3]
then

/usr/ava/super_registars/33/make 128.3 $site_name $name Snode
elif [Sbhays -eg 4 -
then
/usr/ava/super_registers/33/make 256 $site pame $name Snode
elif [Sbays —eg 5] -
then

/usr/ava/super_registers/33/make_256.s Ssite name $name Sncde
elif [Sbays —eq 7] -
then

/usrt/ava/super_registers/33/make_512 $site name $name Snoce
elif [Sbays —eg 8]
then
~ /usr/ava/super_registers/33/make_512.s $site name $name S$node
elif [S$bays —eg 13]
then

/usr/ava/super registers/33/make_ 1024 $site name S$name S$ncde
else i
/usr/ava/suoer regls;e*s/33/maxe 2048 $51ce name S$name $node

[Stype —eq 1]

if [Sbays -eqg 0]
then

/usr/ava/super_ *egﬁs_ers/Bl/make 8 $site name $name $node
elif [$bays -eq 1]
then

/usr/ava/super_registers/31/make_16 $site name $name $ncde
elif [Sbays —-eg 2]
then

/usr/ava/supe* regvs*ers/BL/make 32 $site name $name $node
elif [S$bays —-eg 4
then

/usr/ava/super_registers/31/make_64 $51t° name $name $node
elif [$bays -eq 6 |}
then

/usr/ava/super registers/31/make 128 $site name $name $node
elif “[$bays -ed 13]
then

/usr/ava/super : regls;e*s/3l/make 256 S$site name $name $noce
elif [$bhays —egq 19]
then -

L /usr/ava/super_ registers/31/make_512 $site name S$name S$node

else '

/usr/ava/super_registers/31l/make 1024 $site_name $name Snoce
fi

e

if [Stype —eq 0]
then

if [$bays —eg 0]
then

/usr/ava/super_: regvsz s/310/make_8 Ssite name $name $ncde
elif [$bays -eg 1]
then

/usr/ava/super_registers/310/make_16 $site name Sname $node
elif [Sbgys —eq 2] _
then

5,452,415
85 | 86

/usr/ava/super registers/310/meke_32 $site name Sname Sncde
elif [Shays -eq &]
then

/usr/ava/super registers/310/make_64 $site_name Sname Sncde
elif [Skays -eq 6]__

then
/usr/ava/super registers/310/make_128 $site _name Sname Sncde
else
/usr/ava/super_registers/310/make_ 256 $site name $name Snode
- fi

fi

echo "Snode $type $bays $growth $name” >> rdx_cnfg.parms
fi
done < /tmp/rdx_cnfg.parms
m /tmp/rdx_cnfg. parms

. update_screens

Module Name is gsdfes

echc "
Creating Super Register files...

/usr/mnsc/gsd/obj/deproc > /dev/null << EQF
binary -
24hr

Yy

EQF

echo "

Assembling Screens...
"

echo assemble >deprocinp

echo all >> deprocinp

echoc »>> deprocinp

echo >> deDroc1no .

/usr/mnsc/gsd/obj/aenrcc > /dev/nuLl < deprccinp
/Lsr/mnsc/csd/obj/débrcc > /dev/null <K EOQOF
activate

24hr

EQOF
rm deprocinp

Module Name is hialloc.mla .

for 1 in /usr/mla/history/=

do
rm -rf $i
done
for i in /usrl/mla/history/*
do
rm —-rf $i
done
rm -f /usr/mla/histdrives/* -
j=1
%hile read site_name
do
if ["$3" -le 24]
then

/usr/ava/install hialloc2.jcb Ssite nzame

87
else
£i_ -
j= expr $j + 1
sleep 30)

done < Jusr/ava/install/.
/usr/mnsc/mla/cbj/hiprce
all

everyone

2

3000

100

1

EQF
/usr/mnsc/mla/cbj/hiproc
all

default

2

200

20

5

EOF .
/usr/mnsc/mla/obj/hiprce
ail '

"h-mnsc

2

200

20

5

EOF
s/usr/masc/mla/obj/hiproc
all

codex

2

1000

100

7 .

EOF
/usr/mnsc/mla/obj/hiproc
all

nomatch

1

- 200

20

5

ECF
sleep 60

5,452,415

/usxr/ava/install /hialloci.jchb $site_name

site_néemes

> /dev/null << EO

7]

> /dev/null << EO

]

> /dev/null << ECF

> /dev/null << EOF -

> /dev/null <K< EOF

Module Name is hiallocl.job . .

/usr/mnsc/mla/obj/hiproc > /dev/null << ECF

all
$1
1
500
100
32

ECF

88

5,452,415
89 90

Mcdule Name is hialloc2.jckb
/zir/mnsc/mla/obj/hiproc > /dev/null << EOF
a

S1

2
500
100 -
32

EQF

Mcdule Name is install

i="cat Jusr /ava/questions/nnmbe.
f;lel-"/usr/ava/quesulons/se551on sin

echo "$filel") /usr/ava/:.nstall/ quest_file
i="expr-$iz# il R S
»echo nsiv > /usr/ava/cuestlons/numne_ . : BRI
echo.wm,«) Sfilel - : -
echo’ "Installlng the SVStem" >> $£ijel - -
echo “date > :Sfilel '
echo " " > sfilel

/usr/ava/lnsta’l/uograce $filel
ws_number= cat /usr/ava/install/.ws_number”
if ["Sws_number” -ne 0]
then
echo inou .
echo "The 2100 Workstations cannct be displaying graphics during this next
process. All screens being displayes cn GSD Display Windows will now be
canceled beiore proc=°c1ng
) J
>
/usr/ava/install/cancel_all_scrsens

"

/usr/ava/install/gscass
/usr/ava/install/fix grps
/usr/ava/install/store scresens
/usr/ava/install /activate_all_scrsens

echo " "
echo "System is going to ncw rebcct automatically.'
/bin/reboot :

Module Name is is tnum.cC

%#include<stdio.h>
#include<string.h> -

main(argec, argv)
int argc;
char *argv{];

int rdxlen;

int i;

static char rdx[20};
int done_flag;
char sitename{20];
rILe *fd, *fcpen ();

if (argc == 1)
return 1;

if (argc > 2)

return 2; -

5,452,415
921

strepy(rdx, argvi{l]);
rdxlen = strien(rix);
if (! rdxlen)

return 3;
if (rdxlen > 8)
return 3;
if ((rax([0] >= 'a' && rdx[0] <= 'z")
[l ¢ rdx{0] >= 'a' && rdx[0] <= "2"))
(-
i = 1;
while(rdx(i])
{
if ((rdx[i] >= 'a' && rdx[i] <= 'z') ~
ll (rdx{i] >= 'A' && rdx[i] <= 'Z")
(réx([i] >= '0" && ré&x([i] <= '9'))
i++; ’
else
return %;
}
y
else
return 5;
fd = fopen ("/usr/ava/install/.site names", "r" };

done_flag = 1;
while (done_flag)

if (fgets (sitename, 20, £4) 1= 0) e
{
rdxlen = strlen(sitename };
rdxlen -= 1;
if (strncmp (rdx, sitename, rdxlen) == 0)
{
: close (£4d);
return 4;
}
}
else
closeé (fd);'
done_flag = 0;
}
}
return 0O;

}

Mcdule Name is logoff_all screens

/usr/mnsc/gsd/obj/stproc > /dev/null << ECF
cancel

all

cwslxl

EOF ,

/usr/mnsc/gsd/obj/stproc > /dev/null << ECF
request

logoff

cwslxl

ECF

92

93

/usr/mnsc/gsd/cbj/stprec
cancel

all

cws2x1l

°

v
EQF
/usr/mnsc/gsd/cbj/stproc
request

logoff

cws2xl

ECF
/usr/mnsc/gsd/obj/stproc
cancel _

all

cas3zxl

EOF .
/usr/mnsc/gsd/cbj/stproc
request ’
logoff
cws3xl

EQOF
/usr/mnsc/gsd/obj/stproc
cancel

all

cwséxl

ECOF
/Jusr/masc/gsd/obj/stproc
request

logoff

cwsaxl

EQOF
/usr/mnsc/gsd/obj/stproc
/usr/mnsc/gsd/obj /stproc
- cancel .

all

. cwsSxl

ECF
/usr/mnsc/gsd/obj/stproc
request - .
logoff

cws5x1

ECF .
/usr/mnsc/gsd/cbj/storoc
cancel

all

cwsbxl

EQOF
/usr/mnsc/gsd/cbj/stproc

5,452,415

/éev/null K

/dev/null <<

/dev/null <K<

/dev/null K

/dev/null <«

/dev/null <<

/dev/null <K
/dev/nuli <K

/dev/nuil K«

/dev/null <K<

/dev/null <K

ECF

EQOF

EQF

ECF

EQFR

EO®
ECF

ECE

8]
[@]
"y

9%

95

reguestc
logoff
cwsbxl

EOF - :
/usr/mnsc/gsd/cbj/stprec
cancel

all

cws7x1

-

EQF
/usr/mnsc/gsd/obj/stproc
request
logefi

cwsTxl

EOF
/usr/mnsc/gsd/obj/stprec
cancel

all

cws8xl

EQF
/usr/mnsc/gsd/obj/stproc
request

logoff

cws8xl

EQF
Jusr/masc/gsd/obj/stproc
cancel

all

cwslx?2

EQF
Jusr/mnsc/gsd/obj/stproc
request

logoff

cwslx2

EOF . ,
/usr/mnsc/gsd/obj/stproc
cancel

all

cws2x2

ECF
/usr/mnsc/gsd/obj/stproc
reguest

logoiff

CWS2X2

EQF »

/usr/mnsc/gsd/obj/stproc
cancel

all

cws3x2

5,452,415

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/null

/dev/nulil

<k

<<

<<

<<

<<

<«

<<

<<

<<

[}
Q
i}

(o]
@]
hy

EQF

ECF

]
@]
7

1
O
4 rj

96

97 .
EQCF
/usr/mnsc,/gsd/obj/storoc
reguest
logoff.
cws3x2

ECF :
/usr/mnsc/gsd/obj/stproc
cancel »
all

cisdx?2

-
zCF :

/usr/mnsc/gsé/obj/stproc

recuest
icgofl
Cwséx2

EOF ,
/usr/mnsc/gsd/obj/stproc
/usr/masc/gsd/obj/stprec
cancel

all

Cws5x2

EOF
/usr/mnsc/gsd/obj/stproc
request

logoff

cwsSx2

.ECF
/usr/mnsc/gsd/obj/stproc
cancel
all
‘cws6x2

ECF : .

/usr/mnsc, 3sd/obj/stproc
request

logoff

cwsbx2

EOF
/usr/mnsc/gsd/obj/stproec
cancel

all

cwsTx2

ECF
/usr/mnsc/gsd/obj/stprec
reguest

logof£f

cwsTx2

5,452,415

/dev/null << ECF

/dev/null <{ EOF

/dev/nell << EOF

/dev/null << EOF
/dev/null << EOF

/dev/aull TTEOF

/dev/null << EQF

/dev/aull << EOF

/dev/null << ECF

/dev/null << EOF

98

5,452,415
99
ECF
/usr/mnsc/gsd/obj/stproc > /dev/null << ECF
cancel
all -
cws8x2

EQF

/usr/mncc/gsd/ob]/sﬂbroc > /dev/null << EOF
request .
logoff

cws8x2

EOF

Module Name is query_io_shelves

while read node type bays growth name
do
if [$type —eq 1]

100

then
/usr/ava/install/config_31_QUADS $node $hays
£i
if [stype —eq 0]
then -

/usr/ava/lnstall/conflg 310_QUADS $node $bays

fi
done < /usr/ava/screens/rdx_cnfg.parms

Module Name is gquery_ncdes

i=S1
- rdxend=$2
-expand=$3 -
“file2=$4 "
fllel-"/usr/ava/screens/rdx c1fg parms"
if [Sezpand -ne 1]
then - - -
m ~f $fllel
fi
rename= cat /usr/ava/install/.rename_sites”
cd /usr/ava/screens
while ["$i" —le S$rdxend]
co
echo "Configure Site $i : ",
echo "PROMPT: Configure Site $i : " >> §file2
while :
do
echo ~n "Enter SX Type (33,31,310)? "
echo "QUESTION: Entar SX Type (33,31,310)2"
read choice
echo "RESPONSE: $choice” >»> Siile2
if [S$choice —eg 33]
then
type=3
break
eiif [Schoice -ez 31]
then
type=1
break
elif [$choice -eg 310]
then
type=0
break
else 4
echo "Invalid choice-Plezse try again" -

>> siile2

5,452,415

101 102
echo "PROMPT: Invelid choice-Please try again" »> $file?
continue -

i1 »
' done '
[Stype -eg 3]
tnen
while
céo)
echo -n "Enter § Ports. (6<,128,256 ,312,1024 2048)2
echo "QUESTION: Enter % Poris (64,128,256, 12,1024 20483)?" > $£ils?
read choice e e
echo "RESPONSE: $choice” >» $f1192
if [$choice -~eg 64] .
then | ——
while : *
do .
echo -n "Enter % Bays (2 32"
echo "QUESTION: Enter * Bays (2,3)?" > s i
read choice
echo "RESPCNSE: Scno-ce" >> $file2
[$choice -eg 2 }
then
bays=0 T
break
elir [$cm01ce —-eg 3]
tﬂﬁn”’ '
“bays=1
break
. .else
... echo "Invalid choice—Please try agaln"
- echo "PROMPT: Invalid choice-Please try. again® >> $file2
centinue
- fi -
done
break
elif [Schoice -eg 128]
then
while :
do .
echo -n "Enter % Bays (2 3y? v

echo "QUESTION: Enter
read choice
echo "RESPONSE: S$choice" >> §file2
if [Schoice —eg 2 }
then
bays=2
break
- elif [Schoice —eg 3]
then
bays=3
break
else
echo "Invalid cholce-Please try again®
echo "PRCMDPT: Invalid choice-Please try again" >> $filel
continue -
£i
done
break
elif [Schoice -eg 256]
then -
while :
do .
echo -n "Dces this system contain an APU shelf (V/ﬁ)7 "
echo "QUESTION: Does this system contain an APU shelf (Y/N)?" >>q¢s:
read choice
echo "RESPONSE:
case $choice in .
N1{nl| no | KO
bays=5

Bays (2, 3)9" >> sfile2

Scnc:ce" >> $file2

5,452,415

103 104
break
v 'y | ves | ¥ES)
bays=4
break

*)

L4

echo "Invalid choice-Please try again"

echo

esac

done

break

elif [$choice -eq

then

while -

do"
echo
echo
T Tread
cecho
case
N

Y

=)

esacy
done
break
{ $ch

elif

bays 25

break
else

echo "Inv

echo

C IOJ.CD

bajs 0
break

elif [Schoice

then
bays=1
break

elif [Schoi

"PROMPT:
continue

"PROMPT:
continue

"RESPCNSZ: ¢
Schoice -eg

Invalid choice-Please try again® >> $file2

512]

-n "Does this systenm contaln an APU shelf (Y/N)?
"QUESTION: Dces this system contaln'an APU shelf (Y/N)?" >S$fi
choice

YRESPONSE: $choice" »> $f11e2 -
choice in N
T n | no | NO) o e -
bays=8

break

1 s

| 71 yes | ¥E3)

bays=7

break

ii

echo "Invalid choice—Please try again”
echo "PRCMPT:

cen s.-..Lc .

T =~
~ad v -——

ice -eg

(4
0

ralid choice-Piszase try again”
Tavalid choice-pPlease try acaln" >> §file

£15,32,64,128,25€)? ¢
*c“‘s (8,16,32,64,128

T, L2O,

255)>"

ice
ce

£i
if

then

fi

5,452,415
105 106
then
bays=2
break
elif [.Schoics -eg €&]
then .
bays=3
break
elif [$choice -eg 128]
then
bays=6
break
elif [S$choice —eg 256]
then
" bays=13
break
else
echo "Invalid choice-Please try again”
- echo "PROMPT: Invalid choice-Please try again® >> $file2
continue .
fi
done

[Stype -eq O]

while :
do)
echo -n "Enter # Ports (8,16,32)? " -
echo "QUESTION: Enter & Ports (8,16,32)?" >> sfile2
read choice
echo "RESPONSE: Schoice” >> $file2
if { Schoice -eq 8]
then
bays=0
break
elif [Schoice -eg 16]
then
bays=1
) break
elif [Schoice —eqg 32]
then
bays=2
break) -
elif [Schoice -eq 64]
then
bays=4
break
else ?
echo "Invalid choice-Please try again” .
echo "PROMPT: Invalid choice-Please try again" >> $iilel
continue
ii
done

‘while :

co

echo -n "Enter Right or Left Growth Bay Represenptations (r,1)? "

echo "QUESTION: Enter Right or Left Growth (r,1)®" > $file2
read choice ‘
echo "RESPONSE: Schoice™ >> $file2
if ["Schoice" = "r"]
then .
cnfg="r"
break
elif ["S$choice" = "1"]

5’4 2
107 52,415 108

then
cqu="l"
break
else
echo "Invalid choice-Please try again"
echo "PROMPT: Invalid choice-Please try again” >> $file2

continue
£i

done -
Jif | $type —eq 11
’then X

- /usr/ava/install/config_31_QUADS $i $bays $file2

i

if [Stype —eq 0]

then

/usr/ava/install/config_31C_QUADS $i $bays s$filel
£fi
{ Sexpand —eg 1]

then
if ["Srename" -eq 1]
then
while : ¢
do - > -~
echo -n "Enter name for Site $i (1-8 Chars): "
echo "QUESTION: Enter name for Site $i : " >> $filel
read choice _
echc "RESPONSE: Schoice" >> $file2
/usr/ava/install/isalnum Schoice
if [$? -ne 0]
then
echo "Invalid choice-Please try again”
echo "PROMPT: Invalid choice—-Please try again” >> $filel
continue
else
echo "Schoice” >> /usr/ava/lns;all/ site names
name=Schoice
break
fi -
done :
else
if ["si" -le 9]
then
. .echo "ofFice0s${i}" >> Jusr/ava/install/.site names
name=office0%${i} -
else ‘
echo "officeS(i}" >> /u sr/awa/ﬁn zll/.site names
name=cffices{i} -
- fi
fi
echo "$i $type Sbays $cnig Sname" >> $filel
else

echo "Si Stype Sbays S$cnig" >> $iilel —
“expr $i + 1
done

Module Name is reconfig_syst=.

i="cat /us*/ava/cuestlons/nﬁmber
filel="/usr/ava/questions/session.si"

echo "$filel” > /usr/ava/ﬂnsta‘l/ guest_file

i="expr S$i + i

echo "$i" > /usr/ava/questlons/numbe_

echo " > §filel

~-echo: "Reconflgurlng the Entire System” 3> $4._le1

echo ~date »>r$filel o i

5,452,415
109 ' 110

echo " " >> sfilel
echo "
The System will autcmaticaily reboot durinc this proce
¥) 3 g process.

echo "PROMPT: The System will autcmaticzlly reboot Guring this process.” > Sfils:

echo -n "Do you wish to procesd (¥/N) ? TeE
echo "QUESTION: Do you wish to procesed (Y/MN) ? " D> §filel
read choice
echo "RESPONSE: Schoice " >> $filiel
case Schoice-in
v |y | yes | ¥ES)
brezk; 9
ii
x))
echo "Reccniig Systam Aboritsd..."
echo "PROMPT: Reccniigure Systam Aborted..." >> Sfilel
exit 1 :
esac

-

ws number= cat Jusr/ave/install/.ws_number

£ ["$ws_number" -ne 0]
n -
echc " "
echo "The 2100 Workstations carcnot be displaying graphics during this
process. All screens being displayed on GSD Displey Windows will nocw ke
canceled btefore proceeding. .

n

/usr/ava/install/lcgofi_all_sc:eens

fi
/usr/ava/install/delete_sites
susr/ava/install/upgrade $iilel
"if ["$ws_number" -n& 0]
then :
touch /.assemble_graphics
fi . '
echo " "
echo "System is golng to ncw rsboct automatically.”
/bin/rezceot :

Module Name is store_screens

cd /usr/gsd/screen/assemble ’ :
for 1 in *

do .
/usr/mnsc/gsd/obj/deproc > /dev/null << EOF

store

$i

EOF

done

Module Name is upgraae

filel=S1

/usr/mnsc/com/obj/laproc > /dev/null << EOF
level
03

EQOF
while :

do | .
echo -n "Install How Many SXs (1-39)2 "

echo
read
echo
if |
then

rdxnum=Schoicge
echo "$rdxnum" > /usr/ava/install/.rdx number
)

"QUESTION:

choice

"RESFONSE:

111

5,452,415
112

Install How Many SXs (1-39)? " >> $filel

PR

Schoice " >> $filel

Schoice —ge 1 —a $choice -le 39 1

break

else

echo "Invalid choice-Please try again®
echo "PROMPT: Invalid choice-Please try again" >> $filel
continue

fi
done

/usr/ava/insta

while
do
echo

1l/delete sites

echo "Answ wering Y to rename the sites prompt aTlows the use of
customer defined names for the sit es being monitored.
Answer’ng N makes the site names ofiicell for site 1, etc.

echo -n "Do you
echo "QUESTION:

read choice

echo "RESPCNSE:

if |
then

fi

want to rename the sites (Y/N)? *
Do you want to rename the sites?" >> Sfilel

Schoice" >> $filel
-f fusr/ava/install/.site_names]

cp /usr/ava/install/.site names /usr/éva/install/.site_names.old

rm —f£ /usr/ava/install/.site names
touch /us*/ava/lnstaTl/ site_names
case Schoice in

Y |

y | yes | YES)
echo "1" > /usr/ava/install/.rename_sites

nev_sites=1

while ["$i" -le S$rdxnum]

i=1

do
echo
echo
read
echo

0)

3

~n "Enter name for Site $i (1-8 Chars): "
"QUESTION: Enter name for Site $i : " >> $file
choice .

"RESPONSE: $choice® >> $filel
/usr/ava/install/isalnun Schoice
case $? in

ecﬁO

"$cheice” > /usr/ava/lnstall/ site names

i= expr $i + 1

i

echo

~ echo

4)

5)

*)

.
s

echo
echo
HY

echo
echo

echo
echo

"Sitename has'ihvalid length~Please try again"

FPROMPT Sltename has 1nvalld length—?lease try again” >>

"Sltename a.‘eady exls;s—vlease try agala"
"PROMDT Sitename already ex;sts—?lease try again” >y S£i

"Sitename must begin with Alnha Charac*e*—?lease try ac
"PRCMPT: Sitename must begin with Alpnha Character-Pleas

ai
2

"Sitename contains invalid - 'characters-Plezsa try again”

"PROMPT: Sitename contains invalid characters—-Plezze Tt

5,452,415

113 114
echo "Invalid choice-Please try again”
dgho "PROMPT: iInvalid choice-Please try again” >> $filsi
17
esac
done
break
';;
M inl| no !l NO)
=cpo "Q0" > Jusr/aeva/instzil/.ranzme sitses
new_sites=0 T
i=1
while ["Si" —le $xdmaun]
do -
if ["*$it -1le 9]
then ¢
; echo "office0S{il}" >> /usr/ava/lns.al /.site_names
else
. echo "Of;lC“S[l}" >> /usr/ava/lnshall/ site names
fi_ . -
i="expr $i + 17
done z
break ’

ii
*) .
echo "Iinvalid checice—Plezse tr y again”

echo "PROMPT: Invalicd checice-Plezss ;:y again” >> $filel

continue
esac
done
/usr/ava/lnsuall/hlalloc mla $rcrﬂur
m —-f fusr/ava/screens/rcéx3l/cnic/.QUAD* — e
m —£f /Lsr/ava/screans/rdeIO/ nic/.QUAD* ¢
Jusr/ava/install /query_ncdes 1 Sréxzum 0 $filel

/Lsr/ava/lnstaTI/con;vg FZPS $réxacm
/usr/ava/lnstall/conr’q ws_3
Jusr/ava/install /config_ lors
echo "Copying Reports, Commands, Cueries...”
echo "PROMPT: Copying Reports, Ccrmands, Queries..." » $
/usr/ava/install /copy _guery Srdxnusm
/usr/ava/install/copy 1 mla cnds $Srdxnum
/usr/ava/install/actlvate sites
ws number- cat /usr/ava/install/.ws_] number
if r"sws adBer™ -ne 07]
then
echo H n
echo "Creating screen text files..."
echo "PROMPT: Creating screen text files..." >> $filel
.cp /usr/ava/screens/common/wait /usr/gsd/screen/assemble
- cp /usr/ava/screens/common/logoff /usr/gsd/screen/assemble
/usr/ava/install /build_scr $rdxaum
fi

rh
[
;.a
'_A

Module Name is ../screens/make_screens

m ~f ed200 -
rename- “cat /usxr/ava/instal /.IEname_;ites\
réx=51
i=]1
while reac rdxl ‘type bay g*owth name
de =~

'cd fusr/ava/screens S T
if ‘["$i" -ge "$rdx"]

then
if [$type —eqg 3]
;hen
cat ./alarm_summary/33/zlzrm.$i > /Lsr/gsd/scree text/alarm.scr
cd ./xcx33

make screens $rcéxl $bay Sgrowth Sname

5,452,415

115 116
make SR $Srdxl $bay S$Sname
elif { $type ~eg 1]
then
cat ./alarm_summary/31/zlazam.$i > /US*/QSG/SC*e°n/texL/alarm sc
cd . /rdx31 .

ma<e_scre3ns $rdxl $bay $Sgrowth $1an=
maxe_SR $r¥xl $bay Sname

else
cat ./alarm_summary/3i0/zlarm.$i >> fusr/gsd/screen/text/ziarm.sc-
cd ./rdx310
make_screens $rdxl $bay $crowth Sname
make SR $rdxl Shay Snams

£3
if ["$rename" -2g 1]
then
.ocd ..
if ["si" ~l= 9]
then
echo "s/officel$({i}/Sname/g" >> ed200
else
eche "s/o::lC°${i}/$naze/g" >> ed20q¢”
£
echo "$pname” > x200.%twmp
tr a~z A-Z < x200. tmp 2 x20C1.tmp
capname= “cak LZOOl.;ﬂD
lf[“s‘" _lag] .
then .
echo "s/O?FIC?OS{l}/S apname}/s" >> ed200
else
eche "s/OFFICES{i}/$icapname}/c" > ed200
T
fi
i -
i= expr $1 + 1
dope < /us*/ava/screens/rdx_cnfg.parms e
cd Jusr/ava/screens : .
if ["Srename” -eg 1]

then
cp /Ls*/gsc/sc*een/*nxL/ala~u.scr /tmp/alarm. tmp
sed —f ed200 /tmp/alarm.tmp > Jusr/gsd/screen/text/alarm.scr
rm /tmp/alarm.tmp x200.tmp x2001.tmp ed200

£i
Module Name is ../screens/rdx33/make_screens

touth Jusr/ava/screens/rdx33/.scrs_present
rdxl=51
bay=$2
growth=$3
name=$4
if [Hsgrow.th" - "r"]
then
if ¢ "$bay" -eq 0]
then
cp r3bl.64.rg r3bl.ori
elif ["$bay" —eg 1]
then
cp r3bl.64.3rg =
elif { "$bay" —egq 2
then
cp r3bl.128.xg
elif ["Sbay" -eq 3
then
cp r3bl.128. %;g r3bl.ori
elif ["Sbay" -eq 4]
then
cp r3bl.256.rg r3bl.ori

_ 117
elif { “Sbay" ~eqg 5]
then
¢cp r3bl.256.srg r3bl.ori
elif ["Sbay" —eq 7
then ’
cp r3bl.512.rg ri3bl.cri
elif [“Sbay" -eq 8]
then
cp r3bl.512.srg r3bl.ori
elif ["Sbay" -eg 13]
then
cp r3bl.1024.rg r3bl.ori
else
cp r3bl.2048.rg r3bl.ori

[on)

fi
else

if ["Sbay" -eq 0:]

then .
' cp r3bl.64.1g r3bl.ori
elif ["Sbay" -eg 1]
then

cp r3bl.64.31lg r3bl.ori

elif [“Sbay" —eq 2]
then
cp r3bl.128.1g r3bl.ori
elif ["Sbay" -eq 3]
then
cp r3bl.128.31g r3bl.ori
elif ["Shay" —eg 4]
then
cp r3bl.256.1g r3bl.ori
elif ["Shay" -eg 5 1
then
cp r3bl.256.s8lg 13
elif ["Sbay" -eq 7]
then .
cp r3bl.512.1g r3bl.ori
elif ["Sbay" -eg 8]
then
¢p r3bi.512.slg r3bl.ori
elif ["Sbay" -eq 13]
then
cp r3ibl.1024.1g r3bl.ori
else
¢p r3b1.2048.1g r3bl.ori
fi
fi
make_bayl Srdxl Sname
if { "Sbay" -eq 0]
then

bl.ori

make_cxxxl $rdxl 1 1 Ol $name.

make pxx2lc $rdxl 1 S$name
make pxx64 $rdxl 2 ' $name

make ixx1ll $rdxl 2 04 1 $name

make rspll $rdxl 1 Sname
make rspll Srdxl 2 $name
make_axxtl $rdxl 4 3 Sname

th

i
i £

["$bay" -eq 1]
hen

ot

make cxxxl S$rdxl 3 1 07 $name

make pxx64 Srdxl 2 Sname
make pxx2lc Srdxl 3 $name

make ixxll S$rdxl 2 04 1 Sname

make rspll $rdxl 1 Sname

5,452,415
118

5,452,415
119

make rspll $rdxl 2 Sname
make rspll $rdxl 3 $name
make_axxxl $rdxl 1 1 $name

[nsbayn -eq 2]

en :
make cxxxl $rdxl 1 1 Ol $name
make pxx2lc Srdxl 1 Sname
make pxx64 Srdxl 2 ‘$name
make ixxll Srdxl 2 04 1 $Sname
make ixx1l $rdxl 2 06 3 $name
make rspll Srdxl 1> Sname
make_rspll Srdxl 2 S$name
maxe_axxxl Srdxl 1 3 $name

[2 o 19 it

f

£ ["$bay" —eqg 3]

hen
maxke cxxxl $rdxl 3 1 07 $name
make pxx2l $rdxl 2 S$name
make_ pxx2lc $rdxl 3 S$name
make_ ixx1l Srdxl
make ixx1l Srdxl
make rspl0 Srdxl
make rspll $rdxl
make rspll Srdxl

f=-

rt

Sname

HWN NN
N
:
®

make_axxxl $rdxl 1 $name

£i

if ["S$bay" ~eaq 4]

then
make cxxxl $rdxl 3 1 07 Sname
make cxxxl $rdxl 3 3 09 $name
make pxx2l $rdxl‘2 S$name

make pxx2lc $rdxl 3 S$name

make pxx2l $rdxl & Sname
make_ixx1l $rdxl 2 04 1 $name
make ixxll $rdxl 2 06 3 Sname
make ixxll $rdxl 4 10 1 $name
make ixx1l $rdxl-4 12 3 S$name
make rspl0 $rdxl 1. Sname . -
make rspll - $rdxl 2 $Sname
make_rspll $rdxl 3 $name
make rspll $rdxl 4 $name
make_axxxl $rdxl 1 1 Sname

fi

if ["$bay" -eq 5]

then

make_cxxxl $rdxl 3 1 07 S$name
make_cxxxl $rdxl 3 3 09 S$name
make pxx21 $rdxl 2 Sname
make pxx2lc $rdxl 3 S$name
make pxx21 $rdx}t 4 Sname

make ixxll Srdx] -2 04 1 Sname
make_ixx1l Srdxl 2 06 3 Sname
make_ ixx1l $rdxl 4 10 1 Spame
make_ixxll $rdxl 4 12 3 Sname
make rspll $rdxl 1 S$name
make rspll Srdxl 2 Sname
make rspll Srdxl 3 Sname
4

make rspll Srdxl 4 Sname
make_apsl Srdxl S$bay Sname

£i

if ["Sbay" -eq 7 }

then -
make cxxxl $rdxl 3 1 07 Sname
make cxxxl $rdxl 3 3 09 $name

120

fi
if

then

121

make_cxxxl $rdxl 6 1 16 $name
make cxxxl $rdxl 6 3 18 $name
make pxx2l $rdxl 2 $name
make pxx2lc $rdxl 3 S$Sname
make pxx2l $rdxl 4 S$name
make pxx21 $rdxl 5 Sname
make pxx2lc $rdx? 6 Sname

make pxx21l $rdxl 7 Sname
make ixxil $rdxl 2 04 1 Sname
make ixx1l $rdxl 2 06 3 Sname
make ixx11l S$rdxl 4 10 1 Sname
nake_ixx1l $rdxl 4 12 3 $name
make ixx11 $rdxl 5 13 1 $name
make ixx1l $rdxl 5 15 3 S$Sname
make_ixx1ll $rdxi 7 19 1 $name
make ixx1l $rdxl 7 21 3 Sname .
make_rspl0 $rdxl 1 Sname
make rspll $rdxl 2 Sname
make rspll $rdxl 3 Sname
make rspll $rdxl 4 S$name
make rspll $rdxl 5 $name
make rspll $rdxl 6 $name
make rspll S$réxl 7 $name
make axxxl $Srdxl 1 1 Sname

["Sbay" -egq '8]

make cxxxl $rdxl 3 1 07 $name
make cxxxl $rdxl 3 3 09 Sname
make cxxxl $rdxl 6 1 16 $name
make_cxxxl $rdxl 6 3 18 S$name
make pxx2l $rdxl 2 $name
make pxx2lc $rdxl 3 Sname
make pxx2l $rdxl 4 Sname

- make_pxx21 $rdxl 5 S$name

t

Tl

=

make pxx2lc $rdxl 6 S$name

make pxx2l $rdxl 7 S$name

make_ixx1l $rdxl 2 04 1 Sname
make ixx1l $rdxl 2 06 3 $name
make_ixx1ll $rdxl 4 10 1 Sname
make_ixxll $rdxl 4 12 3 Sname
make ixx1l $rdxl 5 13 1 Sname
make ixxll $rdxl 5 15 3 Sname
make ixx1l $rdxl 7 19 1 Sname
make_ixxll Srdxl 7 21 3 Sname
make_rspll $rdxl 1 $name

make rspll $rdxl 2 Sname

make_rspll $rdx1®3 S$name
make_rspll $rcéxl 4 Sname
make rspll $rdxl 5 Sname
make _rspll $rcéxl & Sname
make_rspll $rdxl 7 S$name
make apsl $rdxl $bay Sname

if ["Sbay" -eqg 13]

then
make_cxxxl $rdxl 3 1 07 $name
make cxxxl $rdxl 3 3 09 Sname
make cxxxl $rdxl 6 1 16 Sname
make cxxxl $rdxl 6 3 18 Sname
make_cxxxl Srdxl 9 1 25 $name
make cxxxl $rdxl 9 3 27 $name

make cxxxl $rdxl 12 1 34 Sname
make cxxxl $rdxl 12 3 36 $name
make pxx2l $rdxl 2 S$name

5,452,415

122

5,452,415
123 124

make pxx2lc $réxl 3 Sname
make pxx21 $rdxl 4 Sname
make pxx2l $rdxl 5 Sname
make_pxx2lc Srdxi 6 Sname
make_pxx2l $rdxl 7 Sname

. make pxx21 $rdxl 38 Sname
make_pxx2lc $rdxl 9 Sname
make_pxx21 Srdxl 10 Sname
make pxx2l $rdxl 11 S$name
make pxx2lc $rdxl 12 Sname
make pxx21l $rdxl 13 Sname

make ixx1l $rdxl 2 04 1 Sname
make ixxll $rdxl 2 06 3 Sname
make ixxll $rdxl 4 10 1 Sname
make ixx1l $rdxl 4 12 3 Sname
make ixxl1l $rdxl 5 13 1 Sname
make ixx1l $rdxl 5 15 3 $name
make ixxzll $rdxl 7 19 1 Sname
make ixxll $rdxl 7 21 3 Sname
makxe ixxll $rdxl 8 22 1 $name

make ixx1l $rdx]l 8 24 3 Sname
make ixxl} $rdxl 10 28 1 $name
make ixx1l $rdxl 10 30 3 $nanme
make ixx11l $rdxl IT" 31 1 Snalie
make_ ixx1l $rdxl 11 33 3 $Sname
make_ixx1l $rdxl 13 37 1 Sname
make ixxll $rdxl 13 39 3 $name
make _rspll $rdxl 1 $name
make rspll $rdxl 2 Sname

make ‘rspll $rdxl 3 S$name
make rspll '$rdxl 4 Sname
make_rspll $rdxl 5 $name
make rspll $rdxl 6 $name
make rspll $rdxl 7 $name
make rspll $rdxl 8 S$name
make_xrspll $rdxl 9 $name
make _rspll $rdxl 10 $name
make _rspll $rdxl 11 Sname
make rspll $rdxl 12 Sname
make_rspll $rdxl 13 $name
make apsl $rdxl $bay $name

fi .

1f ["$bay" —eq 25]

then
make_cxxxl $rdxl 3 1 07 Sname
make cxxxzl $rdxl 3 3 09 Sname
make cxxxl $rdxl 6 1 16 S$name
make cxxxl Srdxl 6 3 18 Sname
make cxxxl $rdxl 9 1 25 Sname
make cxxxl $rdxl 9 3 27 $name
make cxxxl Srdxl 12 4 Sname
make_cxxxl $rdxl 12 36 Sname

43 $name
45 S$nane

make cxxxl Srdxl 15
make cuxxl $rdxl 15

Wk Wk W W W
wm
[38)

make cxxxl Srdxl 18 $name
make cxxxl $rdxl 18 54 $name
make_cxxxl $rdxl 21 61 $name
make cxxxl Srdxl 21 3 63 $name
make_ cxxxl S$rdxl 24 70 $name
make cxxxl $rdxl 24 72 $name

nake pxx2l1 $rdxl 2 S$name
make_pxx2lc $rdxl 3 S$name
make pxx2l $rdxl’4 S$name
make pxx2l $rdxl 5 S$Sname
make pxxx2lc $rdxl 6 Sname

5,452,415
125 126

make pxx2l $rdxl 7 Sname
make pxx21 $rdxl 8 $name
make pxx2lc $rdxl 9 Sname
make pxx2l1 $rdxl 10 S$name
make pxx21 $rdxl 11 Sname
make pxx2lc $rdxl 12 Sname
make pxx21 $rdxl 13 Sname
make pxx21 $rdxl 14 S$Sname
make pxx2lc $rdxl 15 $name
make pxx2l $rdxl 16 Sname
make_pxx2l $rdxl 17 $name
make_pxx2lc $rdxl 18 S$name
make pxx2l $rdxl 19 Sname
make pxx2l $rdxl 20 Sname
make_pxx2lc $rdxl 21 Sname
make pxx2l $rdxl 22 S$Sname
make _pxx21 $rdxl 23 Sname
make pxx2lc $rdxl 24 Sname
make px®21 SIGRL 25 Snaffle -

make_ixx1l $rdXl 2 04 1 Shame
make ixxll $rdxl 2 06 3 Sname
make ixx1l $rdxl 4 10 1 $name
make_ixx1l $rdxl 4 12 3 $name
make_ixxll $Srdxl 5 13 1 $name
make_ ixx11-$rdxl 5-15-3 $name
make ixx1l $rdxl 7 19 1 S$name
make_ixx1l $rdxl 7 21 3 Sname
make_ ixx1l $rdxl 8 22 1 Sname
make ixx1l $rdxl 8 24 3 Sname

make ixx1l $rdxl 10 28
make ixx11 $rdxl 10 30
make_ixx11l $rdxl 11 31
make ixx1l S$rdxl 11 33
make ixx1l $rdxl 13 37
make ixx1l $rdxl 13 39
make ixx11 $rdxl 14 40
make ixx1l $rdxl ‘14 42
make ixx1l $rdxly 16 46
make ixx1l $rdxl 16 48
make ixx1l S$rdxl 17 49
make_ ixzll $rdxl 17 51
make ixx1l $rdxl 19 55
make ixx1l $rdxl 19 57
make_ixx1l Srdxl 20 58
make_ixx1l $rdxl 20 60
make_ ixx1l $rdxl 22 64
make ixx1l $rdxl 22 66
make ixx1l $rdxl 23 67
make’ ixx1l $rdxl 23 69
make ixx1l $rdxl 25 73
make_ ixx1l $rdxl 25 75
make rspll $rdxl 1 S$name
make rspll $rdxl 2 $name

Sname
$name
Sname
$name
Sname
Sname
$name
Sname
Sname
Sname
Sname
$name
Sname
Sname
Sname
Sname
Sname
Sname
Sname
Sname
$name
$name

WHWHRWHRWHWRERWHWHWHREWER W W

make rspll $xrdxl 3 $name
make rspll $rdxl 4 Sname
make rspll $rdxl 5 Sname
make rspll $rdxl 6 Sname
make_rspll $rdxl 7 $name
make_rspll $rdxl 8 Sname
make_rspli $rdxl ¢ s$nzme

make rspll $rdxl 10 Sname
make rspll $rdxl 11 Sneme
make_rspll $rdxl 12 3Jname
make_rspll $rdxl 13 Sname
make_rspll $rdxl 14 Sname

5,452,415
127 | 128

make rspll $rdxl 15 Sname
make rspll $rdxl 16 Sname
make rspll $rdxl 17 Sname
make rspll $rdxl 18 Sname
make rspll $rdxl 19 S$name - -
make rspll $rdxl 20 S$name
make rspll $rdxl 21 Sname |
make rspll $rdxl 22 Sname
make rspll $rdxl 23 Sname
make rspll S$rdxl 24 Sname
make rspll S$rdxl 25 $name
make_apsl Srdxl $bay $name
fi

Module Name is ../screens/rdx33/make SR

rdxoum=5L
bay=$2
name=$3
if ["$rdxnum" -ge 1 -a "Srdxnum" -le §]
then
site name—"SSOS{rdxnum}"
else
site name="SSS[rdxnum}"
fi
if [Sbay ~eq 0]
then .
/usr/ava/super_registers/33/make_64 Ssite name Sname Srdxnum
elif [Sbay -eq 1]
then
/usr/ava/supexr re~lste*s/33/w&<¢ 64.3 $site name Sname Srdxnum
elif [S$bay -eg 2]
then
/usr/ava/super_: reclsuers/BB/ﬂa<= 128 $site name Sname Srdxnum
elif [$hay —eq 3] : -
then -
/usr/ava/super_registers/B3/make_128.3 Ssite name Sname Srdxnum
elif [$bay -eq 4]
then :
/usr/ava/super_registers/33/make_ 256 $site_name $name Srdxnum
elif [Sbhay -eqg 5]
then
/usr/ava/super_registers/33/maka 256.s $site name Sname Srdxnum
elif [S$bay -eq 7]
then
/usr/ava/suner _registers/33/make 512 $site _name $name S$rdxnum
elif [$bay —-eg 8]
then
/usr/ava/super_registers/33/make 512.s $site_name Sname S$rdxnum
elif [S$bay -eq 13] :
then’
/usr/ava/super_registers/33/make 1024 $site name S$name Srdxnum
else
/usr/awa/super_reglsters/B3/make_2048 $site name Sname Sraxnum

>
Module Name is . ./screens/rdx31/make_screens

todcth /usr/ava/screens/rdx31/.scrs_present
rdx1=$1

bay=$2

growth=$3

name=$4

if ["$growth" = "r"]

then

5,452,415
129 130

if ["Sbay" —eg 0]
then

¢cp rlbl.8.rg rlbl.ori
elif ["Sbhay" -eq 1]
then

cp ribl.16.rg rlbi.ori
elif ["Sbay" -eg 2]
then

cp ribl.32.rg rlbl.ori
elif ["Sbay" -eg ¢]
then .

cp rlbl.64.rg rlbl.ori
elif ["Sbhay" -ef 6]
then

cp ribl.128.rg ribl.ori
else
cp rlbl.256.rg rlbl.ori

else

if ["Spay" -eg O]
then
cp rilbl.8.lg rlbl.ori
elif. ["Sbay" -eq 1]
then
¢cp rlbl.16.1g ribl.ori
elif ["S$bay" -eg 2 1]
then
cp rlbl.32.1g ribl.ori -

~elif ["Sbay" -eq 4]

. then

fi

then
cp ribl.64.1g ribl.ori
elif ["$bay" -eqg-6]

cp rlbl.128.1g rlbl.ori

cp ribl.236.1lg rlbl.ori
fi .

make bay Srdxl $name

if

then

1
if

["SbaY" _eq 0]

cp ritllil.ori.16 ritlll.ori
cp ritllih.ori.l6 rltlllh.ori
cp ripll3.ori.2 rilpll3.ori
cp rlpll3h.ori.2 rlpll3h.ori
make rsp2-3 $rdxl 8 $name
make rsp.apu $rdxl 2 Sname
make_rspi~l $rdxl 3 Sname
make_axll $rdxl S$name

make txxx $rdxl 8 2 Sname
make_twoex $rdxl 8 2 $name
make_pxxx $rdxl 8 Sname
make_pxox Srdxl 2 $name
make_ioc bay $fdxl 3 Sname

[usbayn _eq l]

then

cp rltlll.ori.l6 ritlll.ori
cp rltlllh.ori.16 rltllilh.ori
cp rlpll3.ori.2 ripll3.ori

cp rlpli3h.ori.2 ripll3h.ori
make_rsp2-3 $rdxl 8 Sname
make_rsp.apu $rdxl 2 Sname
make_rspl-2 $rdxl 3 S$name

5,452,415
131
$rdxl S$name
$rdxl 8 2 $name
Srdxl 2 2 Sname
make pxxx $rdxl 8 Sname
make pxxx $rdxl 2 $name
make jio bay $rdxl 3 $name
fi
x: ["Sbay" -eq 2]
tnen
cp I
cp

: 132
make_ axll
make txxx
make_tuxx

- 4-111

ori.32 ritlli.ori
ritiilh.ori.32 ritlllh.ori
cp ripli3d.ori.2 rilpli3.ori
cp ripli3h.ori.2 rlpll3h.ori
make_rsp2—3 $rdxl 8 Sname
make rsp.apu $rdxl 2 Sname
make_ *sol -4 Srdxl 3 S$name
make_axll $rdxl Sname
make_txxx Srdxl 8 2 Sname
make, txox $rdxl 2.2 $name
make pxxx S$rdxl 8 $name

make pxxx $rdxl 2 Sname

_ make io_bay $rdxl 3 Sname

i f "$bay" -eqg 4]
he

rri-' r-h

{
en
cp
cp

rltill.ori.64 ritlll.ori
rltlilth.ori.64 rltlllh.ori
cp rlplli3.ori.2 rjpll3.ori
cp *lollBh ori.2 rlpll3h.ori
make rsp.aps S$rdxl 1 Sname
nakﬂ_rapZ 3 $rdxl 8 S$name
make rsp2-3 $rdxl 2 Sname
make rspl-4 $rdxl 3 $name
make rspl-4 $rdxl 4 $name
make_l1x11 S$rdxl $name

make sx12 $rdxl $name
make_dx13 $rdxl Sname

make txxx $rdxl 8 2 $name
make txxx Srdxl 2 2 $name
make pxxx Srdxl 8 $name

make pxxx Srdxl 2 $name

make io_bay $rdxl 3 $name
make io _bay $rdxl 4 S$name

ct e kh
2 1

["Sbay" _eq 6]
hen ‘ '
rltill.ori.128 rltill.ori
rltlllh.ori.128 ritllih.ori
ripll3.ori.2 riplli3.ori
rIplish.ori.2 ripll3h.ori
make_rsp.aps $rdxl 1 $name
make rsp2—3 $rdxl 8 S$name
make rsp2-3 $rdxl 2 $name
make rspl-4 $rdxl 3 $name
make_rspl-4 $rdxl 4 $name
make rsp1—4 $rdxl 5 S$name
make_rspl-4 $rdxl 6 $name

make_1x11l
make sx12
make_dx13
make txxx
make hoexx
make pxxx
make Dpxxx
make_ioc_ba

Srdxl Sname
Srdxl S$name
Srdxl Sname
Srdxl 8 2 S$name
Srdxl 2 2 Sname
Srdxl 8 Sname
$rdxl 2 $name
v Srdxl 3 $name

5,452,415
133 : 134
make_io _bay $rdxl 4 Sname
make ioc_bay $rdxl 5 Sname
make_io bay S$rdxl 6 Sname
£i M
if ["Sbay" -eq 13]
then -
cp rltlli.ori.128 riltlll.ori
cp rltlllh.ori.128 ritlllh.ori
cp ripll3.ori.6 rlpil3.ori
cp rlpll3h.ori.6 rlpli3h.oxi
make rsp.aps $rdxl 1 Sname

make rsp2-4 $rdxl 9 Sname
make rsp2-4 $rdxl 8 Sname
make_rsp2—4 $rdxl 7 Sname
make_rsp2-4 S$rdxl 2 $Sname
make_rspl-4 $rdxl 3 $name
make rspl-4¢ Srdxl 4 Sname
make_rspl-4 $rdxl 5 Sname
make rspl-4 $rdxl 6 Sname

make rspl-4 $rdxl 10 Sname
make_rspl-4 $rdxl 11 Sname
make rspl-4 $rdxl 12 $name
make rspl-¢ $rdxls 13 $name
make_1x1l $rdxl $nare
make_sx12 $rdxl $name
make dxl3 Srdxl Sname

Wb

make twzx $rdxl 2 2 Sname
make txx $rdxl 2 4 Spame
make_txxx $rdxl 7 2 S$name
make txxx $rdxl 7 4 Sname
make_txxx $rdxl 8 2 Sname
make_ txxx $rdxl 8 4 Sname
make txxx $rdxl 9 2 Sname
make_txxx $rdxl ¢ 4 Sname
make pxxx $rdxl 2 Sname
make pxxx $rdxl 7 S$Sname
make pxxx $rdxl 8 Sname
make pxxxX $rdxl 9 Sname

make_ioc _bay $rdxl 3 $Sname
make io_bay $rdxl 4 Sname
make_io bay $rdxl 5 Sname
make_io_bay $rdxl 6 Sname
make_io_bay $rdxl 1C Sname
make io bay $rdxl 11 $name
make_io bay $rdxl 12 $nam&
make_ic_bay $rdxl 13 Sname

fi
Module Name is ../screens/rdx31/make SR

rdxnum=$1 N T T IR

bay=$2 -

name=$3

if ["Srdxnum" —ge 1 -a "$rdxnum" -le 9]

then

site_name="SS0$ {rdxnum}"”

else :
site_name="8S$ {rdxnum}"

fi

if [$2 —eq O]

then .
/usr/ava/super_registers/31l/make 8 $site pame Sname $rdxnum

elif [$2 ~eq 1]

then

5,452,415
135 136

/usr/ava/super_registers/31/meke 16 $site name $name S$rdxnum
elif [$2 —eqg 2]
then

/usr/ava/super_registers/31/make_32 $site name Sname $rdéxnum
elif [$2 —eg ¢ 1 °
then » -

/usr/ava/super registers/31/make 64 $site name Sname $rdxnum
elif [$2 —eq 6]
then

/usr/ava/super_ registers/3l/make_128 $site name $name $rdxnum
elif [$2 —eqg 13]
then

/usr/ava/super_registers/31l/make 256 $site name $name S$rdxaum
elif [$2 —eq 19] o
then

/usr/ava/super_registers/31/mzke 512 $site name Sname $rdxnum
else

/usr/ava/super_registers/31/make 1024 $site name $name $rdxnum

£i

Module Name is .;/screens/rdelO/make_screens

touch /usr/avd/sCreens/rdx310/.scts_present
rdxl=$1 T i
bay=$2
growth=$3
name=$4 .
if ["$growth" _- nru]
then o,
if ["S$bay" —eq 0]
then
cp rO0bl.8.rg rObl.ori
elif ["Sbay" —~eg 1]
then
cp rObl.16.rg rObl.cri
elif ["$Sbay" -eg 2]

then
cp rObl.32.rg rObl.ori
else
cp rObl.64.rg rCkl.cri
fi
else ¢ -
if ["$bay" —-eq 0]
then

cp rObl.8.1g rObl.ori
elif ["$bay" -eg 1]
then
cp rObl.16.1g rObl.ori
elif ["Sbay" -eq 2]
then
cp r0bl.32.1g rObl.ori
else
cp r0bl.64.1g rObl.ori
fi
£i
make bay $rdxl S$name
if ["$bay" —eq 0O]
then
cp rO0tlll.ori.l6 rOtill.ori
cp rOtlllh.ori.16 rOtlilh.cri
cp rOpll3.ori.16 ,rOpll3.ori
cp r0pll3h.ori.16 rOpil3h.ori
make rsp.apu $rcdxl 2 S$name
make rspl-1 $rdxl 3 Snhame
make_axll $rdxl $name

fi

137

make txxw $rdxl 2 2 $name
make txxx $rdxl 2 4 $name
make pxxx $rdxl 2 $name

make io bay $rdxl 3 $name

if ["Sbay" ~eq 1 1

5,452,415

then

cp rO0tlll.ori.16 rOtlll.ori
cp rOtlllh.ori.l6 rOtlllh.ori
cp rOpll3.ori.l6 rOpll3.ori
cp rOpll3h.ori.1l6 rOpll3h.ori
make_rsp.apu $rdxl 2 S$name

.C
pn

make rspi-2 $rdxl 3 S$name
make_axll $rdxl $name
make txxx Srdxl 2 2 $name

make txxx Srdxl 2 4 $pname -

make_pxxx $rdxl 2 $name
maRe_io bdy$Tdxl 37Shime

if ["Sbay" —eq 2]

then -

cp rOtlll.ori.32 rOtill.ori
cp rOtlllh.ori.32 rO0tlllh.ori
cp r0pll3.ori.32 rOpll3.ori
¢cp rOpli3h.ori.32 rOpli3h. ori

£i
i€

make rsp.apu $rdxl 2 Sname
make rspl-4 $rdxl 3 $name
make axll $rdxl $name
make txxx $rdxl 2 2 Sname
make_txxx Srdxl 2 4 Sname
make_pxxx $rdxl 2 $name
make io bay $rdxl 3 $name

[usbayn -eq 4]

then

make rspl-3 $rdxl 1 $name
make rspl-4 S$rdxX¥ 2 Sname
make_rsp2-4 $réxl 3 Sname
make_rsp2-4 $rdxl 4 Sname
make rsp2-4 $rdxl 5 $name
make rsp2-4 $rdxl 6 Sname
make rspl-4 $rdxl 7 Sname
make 1x11 $rdxl Sname

make_sx12 $rdxl Sname

make dx13 $rdxl Sname

make_tl1-3 $rdxl 3 2 Sname
make_tl-3 $rdxl 3 4 Sname

make_t2-4 Srdxl 4 2 Sname
make t2—4 S$rdxl 4 4 Sname
make_tl-3 $rdxl 5 2 Sname
make tl1-3 $rdxl 5 4 $name
make t2-4 $rdxl 6 2 $name
make_t2-4 $rdxl 6 4 $name
make pxxx.6 $rdxl 3 $name
make pxxx.6 $rdxl ¢4 $name
make pxxx.4 $rdxl 5 $name
make pxxx.4 $réxl 6 Sname
'mako io_bay Srdxl 2 Sname
make_io_bay $rdxl 7 $name

fi

Module Name is

rE&xful<351 -
bay=3$2 - -7
name=$3

../ screens/rdx310/make_SR

138

5,452,415

139 140

if ["Srdxnum® -ge 1 —a "$rdxnum” -le 9]
then

site_name="SS0$ {rdxnum}"
else .

site name="SS${rdxnum}"
£i
if [$2 —eq 0]
then .

/usr/ava/super~registers/3lO/make_B $site name $name Srdxnum
elif [$2 —eg 1]
then

/usr/ava/super_registers/310/make 16 $site_name Sname Srdxnum
elif [$2 —eq 2]
then :

/usr/ava/super_registers/310/make_32 $site_name S$name $rdxnum
elif [$2 —eq 4] s
then)

/usr/ava/super_registers/310/make_64 $site_name Sname $rdxnum
elif [$2 —eg 6]
then

/usr/ava/super_registers/310/make_ 128 $site name Sname Srdxnum
else

/usr/ava/super_registers/310/make_256 $site_name $name $rdxaum
fi

What is claimed is:
1. A method for automatically monitoring and con-

figuring a communucations network comprising a plu-

means for altering said user templates and said levels
of integration in response to said instructions;
means for configuring said user templates to monitor

rality of components, the method comprising the steps 3q the communications network in response to said
of: instructions; and
associating a plurality of user templates with a plural- display means for displaying said altered user tem-
ity of levels of integration of the components of the plates and said altered levels of integration.
communications network so that a user template 3. A method for automatically monitoring and con-
associates with each one of said levels of integra- 35 figuring a communications network comprising a plu-

tion;

associating each one of said user templates with other
of said user templates to permit error conditions
existing at one of said components to indicate a

rality of components, the method comprising the steps
of:

associating each one of a plurality of user outputs
with a plurality of predetermined sets of the com-

plurality of error signals on predetermined ones of 49 ponents of the communications network so that at
said user templates; least one user output associates with at least one of
communicating instructions and queries through a said predetermined sets;
display, said instructions and queries associated associating certain ones of said user outputs with
with said error signals and said levels of integra- other ones of said user outputs to permit an error
tion; 45 condition existing at one of the components to
altering said user templates and said levels of integra- indicate a plurality of error signals on selected ones
tion in response to said instructions and said error of said user outputs;
signals; communicating instructions and queries through a
configuring said user templates to monitor the com- display, said instructions and queries associated
munications network in response to said instruc- sg with said error signals and said selected ones of said
tions; and A user outputs;
displaying said altered user templates on said display. altering said selected ones of said user outputs in
2. A system for automatically monitoring and config- response to said instructions;
uring a communications network comprising a plurality configuring said plurality of user outputs to monitor
of components, comprising: 55 the communications network in response to said

a plurality of user templates associated with a plural-
ity of levels of integration of the components of the
communications network so that a user template
associates with each one of said levels of integra-
tion;

means for associating each one of said user templates
with other of said user templates to permit error
conditions existing at one of said components to
indicate a plurality of error signals on predeter-
mined ones of said user templates;

a set of instructions and queries for communicating
through a display, said instructions and queries

. associated with said error signals and said levels of
integration;

60

65

instructions; and
displaying said altered user outputs on said display.
4. A system for antomatically monitoring and config-

uring a communications network comprising a plurality
of components, comprising:

a plurality of user outputs, each associated with a
plurality of predetermined sets of the components
of the communications network so that at least one
user output associates with at least one of said pre-
determined sets;

means for associating certain ones of said user outputs

with other ones of said user outputs to permit an
error condition existing at one of the components
to indicate a plurality of error signals on selected

5,452,415

141

ones of said user outputs;

a set of instructions and queries for communicating
through a display, said instructions and queries
associated with said error signals and said selected
ones of said user outputs;

means for altering said selected ones of said user
outputs in response to said instructions;

means for configuring said plurality of user outputs to
monitor the communications network in response
to said instructions; and

display means for displaying said altered selected
ones of said user outputs.

5. A method for automatically monitoring and con-
figuring 2 communications network comprising a plu-
rality of components, the method comprising the steps
of:

associating a plurality of user outputs with a plurality
of levels of integration of the components of the
communications network so that at least one user
output associates with each one of said levels of
integration;

communicating instructions and queries through a
display, said instructions and queries associated
with said levels of integration;

altering said user outputs and said levels of integra-
tion in response to said instructions; and

configuring said levels of integration to monitor the
communications network in response to said in-
structions;

displaying said altered user outputs and said altered
levels of integration.

6. An automatic monitoring and configuring system

" for a communications network comprising a plurality of
components, comprising:

a plurality of user outputs associated with a plurality
of levels of integration of the components of the
communications network so that at least one user
output associates with each one of said levels of
integration;

a set of instructions and queries for communicating
through a display, said instructions and queries
associated with said levels of integration;

means for altering said user outputs and said levels of
integration in response to said instructions; and

means for configuring said levels of integration to
monitor the communications network in response
to said instructions;

display means for displaying said altered user outputs
and said altered levels of integration.

7. A method of generating a computer monitor repre-
sentation of a communications network having a plural-
ity of sub-components and higher components for use in
monitoring and controlling said communucations net-
work, comprising the steps of:

predefining a plurality of templates, one for each
possible sub-component and higher component of
the communications network, each of said tem-
plates defining at least one characteristic of a por-
tion of the communications network;

interrogating a user to supply responses describing a
predetermined set of characteristics of the commu-
nications network from a selection of possible char-
acteristics defined by said templates;

generating a database from which any desired repre-
sentation of the communications network may be
displayed based on the responses to said interrogat-
ing step; and

displaying a simulation of any portion of the commu-
nications network as requested by the user.

5

20

45

55.

65

142

8. A system for generating a computer monitor repre-
sentation of a communications network having a plural-
ity of sub-components and higher components for use in
monitoring and controlling said network, comprising:

a plurality of predefined templates, one for each pos-
sible sub-component and higher component of the
communications network, where each template
defines, in software terminology, a system charac-
teristic of an associated portion of the network;

means for interrogating a user to supply responses as
to the sub-components and higher components of
the communications network from a selection of
choices defined by said predefined templates;

a database from which any desired representation of
the communications network may be displayed,
based on the responses to said interrogating means;
and

a simulation for displaying any portion of the commu-
nications network as requested by said user.

9. A method of monitoring a communications net-
work having a plurality of sub-components and higher
components using a computer monitor representation,
comprising the steps of:

predefining a plurality of templates, one for each
possible sub-component and higher component of
the communications network, each one of said-
templates defining, in software terminology, at
least one alarm condition effecting a portion of the
communications network;

interrogating a user to supply responses describing
the sub-components and higher components of the
communications network from a selection of
choices defined by said templates;

generating a database, from which any desired repre-
sentation of the communications network may be
displayed, based on said responses to said interro-
gating step; and

displaying a simulation of any portion of the commu-
nications network and alarm conditions in that
portion.

10. A system for monitoring a communications net-
work having a plurality of sub-components-and higher
components using a computer monitor representation,
comprising:

a plurality of templates for predefining each possible
communications network sub-component and
higher component, where each template defines at
least one network alarm condition;

a set of queries for interrogating a user to supply
responses describing the sub-components and
higher components of the communications net-
work from a selection of choices defined by said
templates;

a database for generating a display of any desired
representation of the communications network
based on the responses to said set of queries; and

a display for responsively displaying a simulation of
any alarm conditions.

11. A method of generating a computer monitor rep-
resentation of a communications network having a plu-
rality of sub-components and higher components for
use in monitoring and controlling said communications
network, comprising the steps of:

predefining a plurality of templates, one for each
possible communications network sub-component
and- higher component, where each template de-
fines a set of characteristics for a portion of the
communications network;

associating certain ones of said plurality of templates

5,452,415

143

with one another to indicate relationships among

the communications network sub-components and

higher components; B
interrogating a user to supply responses as to the

sub-components and higher components of the 3
communications network from a selection of
choices defined by said templates;
generating a database from which any desired repre-
sentation of the communications network may be 19
displayed, based on the responses to the interrogat-
ing step; and
displaying a simulation of any portion of the commu-
nications network as requested by said user. 15
12. A system of generating a computer monitor repre-
sentation of a communications network having a plural-
ity of sub-components and higher components and for
use in monitoring and controlling said communications
network, the system comprising: 20
a plurality of templates for each possible sub-compo-
25
30
35
40
45
50
- 55
60

65

14

nent and higher component of the communications
network, where each template defines, in software
terminology, a set of characteristics for that por-
tion of the communications network;

means for associating certain ones of said plurality of
templates with one another to indicate relation-
ships among said communications network sub-
components and higher components;

a plurality of queries for interrogating a user to sup-
ply responses as to said sub-components and higher
compornents of the communications network from
a selection of choices defined by said templates;

a database for containing data to display any desired
representation of the communications network
based on the responses to said plurality of queries;
and

means for displaying a simulation of any portion of
the communications network as requested by the

user.
* x k k%

